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Abstract We investigate minimum energy paths of the quasi-linear problem with the p-
Laplacian operator and a double-well potential. We adapt the String method of E, Ren,
and Vanden-Eijnden (J. Chem. Phys. 126, 2007) to locate saddle-type solutions. In one-
dimension, the String method is shown to find a minimum energy path that can align along
one-dimensional “ridges” of saddle-continua. We then apply the same method to locate sad-
dle solutions and transition paths of the two-dimensional quasi-linear problem. The method
developed is applicable to a general class of quasi-linear PDEs.

Keywords p-Laplacian · String method · Mountain pass algorithm

1 Introduction

Since the paper by Ambrosetti and Rabinowitz [2] in 1973, the mountain pass theorem has
proved to be a major tool in nonlinear PDE analysis. Interest in mountain pass solutions
continues to grow especially in the area of quasi-linear PDEs with Drábek et al. [12]. Cor-
respondingly, the introduction of the mountain pass algorithm by Choi & McKenna [5] has
lead to many new algorithms for computing saddle-point solutions of PDEs based on the
linking theorem [8, 10, 21], providing insight for analysts working on nonlinear problems.

The quasi-linear bi-stable equation
{

εp�pu − W ′(u) = 0 in �,
∂u
∂ν

= 0 on ∂�,
(1.1)

where ε > 0, � is a bounded domain in R
n; n ≥ 1, W(u) = (1−u2)2 is a symmetric double-

well potential, �pu = div(|∇u|p−2∇u) is the p-Laplacian operator with 1 < p < ∞ and
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mailto:j.chamard@surrey.ac.uk


J Sci Comput (2011) 49:180–194 181

ν is the normal direction at the boundary, models a variety of nonlinear media such as
phase transitions in water and ice at transition temperature [16], elasticity [1] and population
models [23]. For p > 2, the p-Laplacian operator models degenerate slow-diffusion while
for p ∈ (1,2) the operator describes singular fast diffusion.

Equation (1.1) is one of the simplest examples of degenerate elliptic equations since
there is a loss of uniform ellipticity of the p-Laplacian operator when |∇u| = 0. Due to this
degeneracy, it is known that solutions of (1.1) are only in general of class C 1,α(�) for some
α ∈ (0,1); see [9]. Equation (1.1) may be reformulated as a variational problem by locating
critical points of the energy functional

J (u) =
∫

�

[
εp

p
|∇u|p + W(u)

]
dx, u ∈ W 1,p(�). (1.2)

For p = 2, the p-Laplacian operator reduces to the standard Laplacian and (1.1) becomes
the well known semi-linear problem

{
ε2�u − W ′(u) = 0 in �,
∂u
∂ν

= 0 on ∂�,
(1.3)

that has been extensively studied; see Kuzin & Pohozaev [20]. In this paper, we define
∇ = (∂x1 , . . . , ∂xn) and J ′ to be the functional derivative of J . For p = 2, one can show
the existence of nontrivial solutions to (1.3) of saddle-type while the limit ε → 0 has been
extensively studied using Gamma Convergence techniques; see [22].

Otta [24] studied (1.1) in one-dimension with � = (0,1) and Neumann boundary condi-
tions using topological shooting techniques applied to equation (1.1), rewritten as a spatial
dynamical system in x i.e., {

ux(x) = |v(x)|p′−2v(x),

vx(x) = ε−pW ′(u(x)),
(1.4)

where p and p′ are conjugated exponents, i.e., 1/p+1/p′ = 1 and W(s) = |1− s2|α , α > 1.
By considering the initial-value problem (1.4) with (u, v)(0) = (u0,0), Otta was then able
to use the results from Drábek et al. [11] to show that provided |u0| < 1, there exists a
unique periodic orbit. If p > α and u0 = ±1 (i.e., the critical points of W(s)) then there is a
loss of Lipschitz continuity of the right-hand side of (1.4). This loss of Lipschitz continuity
leads to a loss of uniqueness of the initial-value problem and one can expect “finite-time”
fronts to exist; fronts that attain u = ±1 in finite x as opposed to the Laplacian case when
fronts connect u(x) = ±1 at x = ±∞. Figure 1, shows a sample of the possible solutions
for the initial-value problem (1.4) when p > α. The grey regions in Fig. 1 depict non-unique
“dead-core” regions.

Drábek et al. [11] showed the existence of solutions for the parabolic system related to
(1.1)

ut = εp�pu − W ′(u), (1.5)

for α, p > 1 on � = (0,1). For the stationary case of (1.5) with p = 4 and W(s) = (1− s2)2

and sufficiently small ε, it was shown that the solutions are of saddle-type and form a whole
continua of critical points in W 1,p(�). The continua is due to translations of the interfaces
from +1 to −1 where the dimension of the continua manifold is determined by the number
of transitions from +1 to −1 i.e., the continua is a one-dimensional curve if there exists
monotonic fronts and two-dimensional if there exists transitions from +1 to −1 and back to
+1. It is known that the number of transitions from +1 to −1 increases as ε is decreased.
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Fig. 1 A selection of solutions
of the initial-value problem (1.4)
with α = 2 and p = 3, u(0) > 0
and v(0) = 0. A continua of
fronts (related by translations of
the interface) connect ±1.
Periodic orbits exists for
solutions |u(0)| < 1. All
solutions with |u(0)| > 1
blow-up to infinity

In higher dimensions, the existence of saddle-type solutions for (1.1) with Dirichlet and
Neumann boundary conditions was proved by Otta [25]. However, it remains an open prob-
lem whether saddle-continua exist in higher dimensions.

To the best of the author’s knowledge, there have been no attempts to numerically com-
pute saddle-continua solutions of quasi-linear problems like (1.1). This appears to be a par-
ticularly tricky numerical problem since the usual approach to solving p-Laplacian type
problems is to use nonlinear conjugate gradient methods due to the possible singular diffu-
sion when 1 < p < 2; see for example [3]. These methods are only able to compute minima
of the energy functional (1.2) and will miss the saddle-type solutions we are trying to lo-
cate. Furthermore, to locate saddle-continua solutions, one would like to compute either a
curve or surface of the continua. Hence, the standard Choi & McKenna algorithm [5] will
be inappropriate for this task since the algorithm is designed to locate only one saddle-type
solution. The High Linking algorithms [8] are only able to locate saddles of energy greater
than an initial saddle making these algorithms unsuitable for the computation and detection
of saddle-continua where they may have the same energy-value.

In the chemical physics literature, the location of saddles and transition paths in the con-
text of calculating the stable configurations of molecules and chemical reaction paths have
been extensively studied since the early 1940s; see Truhlar et al. [31] and references therein.
One is interested in understanding the finite-dimensional energy landscape describing how
molecules change from one state to another. Of crucial importance is the computation of the
Minimal Energy Path (MEP) that provides the most likely transition path from one configu-
ration to another and the corresponding transition state (saddle point); see [18]. In particular,
the MEP can yield the likely transition dynamics of (1.5) in the presence of small noise.

The MEP γ (t) is defined as

∇⊥J (γ (t)) = 0, (1.6)

where γ ∈ C([0,1],X), X = R
n, J is the energy functional, and ∇⊥J is the steepest de-

scent direction perpendicular to the path connecting the two stable configurations γ (0) and
γ (1). Intuitively, one can think of the condition (1.6) as requiring the path to lie at the bottom
of the “valleys” connecting γ (0) and γ (1).

Several numerical algorithms have been developed in order to compute MEPs and tran-
sition states. The two main algorithms are the Nudged Elastic Band (NEB) method [18] and
the String method; see [13, 15]. The NEB method, considers the path connecting γ (0) and
γ (1) as a piecewise connected path of springs. The NEB method then minimises both the
condition (1.6) and the sum of the spring forces. The spring forces are required to prevent
the path from “splitting” in two.

The String method [13] considers a continuous path connecting γ (0) and γ (1). The path
is then discretised γ (ti) ≈ γi for i = 0 . . .N − 1 (where N is the number of points) and for
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Fig. 2 A contour plot of the String method applied to (a) J (x, y) = cos(2x) + 0.57 cos(2x − 2y) +
2 cos(2y) + 1 with an initial endpoints at (−0.5,−1.5) and (1.5,1) and (b) J (x, y) =
min(x2,1) − max(y2,1), a surface that possesses a critical-point-continua, with an initial endpoints
at (−1.5,−0.9) and (1.5,0.9). The paths shown are minimum energy paths, and the initial paths consist of
segments of equidistributed path points. In both panels the initial path for the String method is shown as a
dashed grey straight line. We see that for both energy surfaces, the String method produces paths that pass
through saddles. In particular, the path found in panel (b) passes along the ridge of saddle-continua at x = 0,
−1 ≤ y ≤ 1

each point along the path the ODE

dJ [γi]
dτ

= ∇⊥J [γi], (1.7)

is stepped in τ (either using Euler’s method or Runge-Kutta method). After each step in τ ,
the points along the path are equi-distributed with respect to arc-length to prevent path-
splitting. Usually, the right-hand side of (1.7) is replaced with the gradient of the energy and
the String method is then equivalent to carrying out steepest descent at each point along the
path [15]; see Fig. 2(a) for an application of the String method to a two-dimensional energy
surface.

We note that the MEPs obtained with the NEB and the String method do not guarantee
that any of the computational points lie on a saddle. To acquire good saddle approximations
one may either use the climbing image method [18] or Newton’s method. Furthermore,
solutions found by the NEB and string method depend greatly on the choice of the initial
path, and in some cases an inadequate initial path can result in convergence failure. For
example, if the whole path lies inside the basin of attraction of the same local minimum,
then the whole path will converge to that minimum, and thus the method fails to locate any
saddles.

The condition (1.6) has an interesting consequence for the computation of saddle-
continua since MEPs will naturally want to follow along regions where J ′ = 0 as much as
possible. In Fig. 2(b), we show how the String method locates a continua of critical points
for a two-dimensional energy surface J (x, y) = max(x2,1) − min(y2,1). This property of
the String method does not appear to have been investigated before. We note that the String
method is not guaranteed to locate saddle-continua. For instance, if the initial conditions of
the path in Fig. 2(b) are horizontal, then the path will simply pass straight over the continua.
Furthermore, the String method is only able to find continua of critical points that are pa-
rameterised by a one-dimensional curve. However, our numerical investigations show that,
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in general, if a saddle-continuum exists and the initial path is chosen wisely, then the String
method can locate it.

The String method has been successfully applied to PDEs in the context of ferromagnetic
thin films and current dissipation in thin superconducting wires [14, 26, 27]. In this paper,
we propose an infinite-dimensional version of the String method that allows us to compute
MEPs and continua of critical points of quasi-linear problems such as (4.1). We aim to
consider MEPs with the space X = W 1,p(�) in (1.6).

The paper is outlined as follows. In Sect. 2, we present the numerical algorithms we
use to investigate (1.1), where the String method is extended to the infinite-dimensional
space W 1,p(�). We discuss the importance of the choice of the steepest descent vector
in Sobolev space by considering W 1,p(�) as a completion of C∞(�) with respect to the
standard W 1,p(�) Sobolev norm. We present our results in Sect. 3, and draw conclusions and
discuss how our numerical methods can be applied to more general quasi-linear problems in
Sect. 4.

2 Numerical Methods

2.1 The String Method

The version of the String method we shall use is by E et al. [13, 15]. This method has been
shown to be robust and fast converging to the MEP. Given an energy functional J , we let
u = u(x, t; τ) be the position of the string where t is the parameterisation of the string and
we evolve the following equation for a number of small timesteps:

{
uτ (x, t; τ) = D∗J [u(x, t; τ)],
u(x, t;0) = u0(x, t),

(2.1)

where D∗J [u(x, t; τ)] is the steepest descent direction of the path at the point t and time
τ .1 If the path is discretized, then after each timestep we interpolate the path points so that
they are equidistributed with respect to parametric arclength.

We note that other reparameterisations are possible with the most common choices being
energy-weighted arc-length [13] or equi-distribution of error [28]. The reparameterisation of
the path has strong links with moving meshes for the solution of parabolic partial differential
equations [4].

A crucial step in the String method is the calculation of the steepest descent direction v.
For this, we follow Choi & McKenna [5] and compute the steepest descent direction w of
J at the point u such that the functional J has the largest decrease per unit norm. One can
choose several different norms when computing the steepest descent. However, it is natural
to look for the steepest descent direction in the space of solutions being sort. Thus, we wish
to find

w := min
‖v‖1,q=1

J ′(u)v, (2.2)

where v ∈ W 1,q (�) and ‖ · ‖1,q is the standard Sobolev norm i.e.,

‖u‖1,q =
(∫

�

[|∇u|q + |u|q]dx
)1/q

.

1We call D∗J (u) the steepest descent of J at u if it exists, and J ′(u)v the directional derivative of J (u) in
the direction v.
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Upon introducing the Lagrange functional L, we can reformulate this problem as a find-
ing a critical point of

L(v,λ) := J ′(u)v + λ(‖v‖q

1,q − 1),

=
∫

�

[
εp|∇u|p−2∇u∇v + W ′(u)v

]
dx + λ

(∫
�

[
|∇v|q + |v|q

]
dx − 1

)
.

By taking the Fréchet derivative of L, we compute the stationary point of L to yield

L′(v,λ)ϕ =
∫

�

[
εp|∇u|p−2∇u∇ϕ + W ′(u)ϕ

]
dx

+ λ

(∫
�

[
q|∇v|q−2∇v∇ϕ + q|v|q−2vϕ

]
dx

)
,

for all ϕ ∈ W 1,q (�). Thus, stationary points of L(v,λ) corresponds to finding the weak
solution of the following equation

{−∇ · (|∇z|q−2∇z) + |z|q−2z = εp∇ · (|∇u|p−2∇u) − W ′(u) in �,
∂z
∂ν

= 0 on ∂�,
(2.3)

where z = (qλ)1/(q−1)v and u is given. It is easy to show that λ > 0 and the function v =
z(qλ)1/(1−q) defines the steepest descent direction in W 1,q (�).

The natural space to look for the steepest descent direction is in W 1,p(�) i.e., q = p.
Existence of the steepest descent direction for q = p and p ∈ [2,∞), defined by (2.3),
follows since z also satisfies the equation

∫
�

[
∇z|∇z|p−2∇ϕ + z|z|p−2ϕ − f (x)ϕ

]
dx = 0, ∀ϕ ∈ C∞(�),

where f ∈ W−1,q(�) is the right-hand-side of (2.3), and the direct method of Calculus of
variations can be applied; see Struwe [29, Theorem 1.3]. Uniqueness follows by the fact that
the p-Laplacian operator is strongly monotone.

A key complication with looking for the steepest descent direction in W 1,p(�) is that
one needs to solve the nonlinear PDE (2.3) if p �= 2 for z. It may be computationally better
to choose the steepest descent direction to be in H 1(�) i.e., q = 2, where one needs only
solve a linear PDE for the steepest descent direction greatly speeding up the computation.
One can not prove that the H 1(�) steepest descent exists since the right-hand side of (2.3)
may not live in H−1(�) for general p ∈ (1,∞), but the discretized H 1(�) steepest descent
should be equivalent to the discretized W 1,p(�) steepest descent. Hence, we expect the
H 1(�) steepest descent to allow us to locate saddle-point solutions of (1.1). The effect
of choosing different norms for the steepest descent direction will be investigated in the
following sections.

In order to numerically solve (2.3), we need to discretise the p-Laplacian operator. We
choose two discretisations on the domains � = (0,1) or � = (0,1)2: Finite differences
and Chebyshev pseudo-spectral method. We will use both methods to test convergence and
compare with analytical results, cf. Otta [24].

We first describe the finite difference method. In one dimension, we impose a equi-spaced
mesh xi = ih,h = 1/(Nx − 1) and i = 0, . . . ,Nx − 1 and approximate u(xi) ≈ ui and its
derivatives via central difference approximations. In two dimensions, we employ the stan-
dard 5-point stencil on a uniform mesh for calculating the spatial derivatives. This scheme is



186 J Sci Comput (2011) 49:180–194

equivalent to the finite element discretisation using a union of regular triangles with piece-
wise linear basis functions; see Choi & McKenna [5].

The second discretisation method we use is the Chebyshev pseudo-spectral method de-
scribed in Trefethen [30]. In order to compute the 2D operator, we use a tensor product
grid and calculate the discretised p-Laplacian operator using Kronecker products: if A is an
m × n matrix and B is a p × q matrix, then the Kronecker product A ⊗ B is an mp × nq

matrix which consists of m×n blocks where each block is a p ×q matrix: the (i, j)th block
is given by aijB . This approach yields the following approximation for the p-Laplacian
operator

Dx = DNx ⊗ INy ,

Dy = INx ⊗ DNy ,

∇(|∇u|p−2∇u) ≈ Dx

[
(|Dxũ|2 + |Dyũ|2)(p−2)/2Dxũ

]
+ Dy

[
(|Dxũ|2 + |Dyũ|2)(p−2)/2Dyũ

]
,

where ũ is the approximation of u on the tensor product grid, IN is the identity matrix of
size N , and DN are the Chebyshev pseudo-spectral differentiation matrices of size N and,
Nx and Ny are the number of modes used in the x and y direction, respectively; see [30].

The discretised form of (2.3) can be solved using either nonlinear conjugate gradient
methods or nonlinear least square methods such as the trust-region or Levenberg-Marquardt
method; see Barrett & Liu [3] for an application of the Polak-Ribiére conjugate gradient
method applied to the p-Laplacian and Coleman & Li [7] for a description of the trust-
region method. To impose the boundary conditions, we solve concurrently the discretised
form of (1.1) on the interior of the domain and the boundary conditions.

To initialise the String method, we define an initial path (us(t,x)) that is a piecewise
convex combination of three functions (ũ1, s, ũ2) that connect ũ1 and ũ2 via s such that

us(t, x) =
{

2ts(x) + (1 − 2t)ũ1(x), t ∈ [0, 1
2 ],

(2t − 1)ũ2(x) + (2 − 2t)s(x), t ∈ ( 1
2 ,1]. (2.4)

We usually take ũ1 ≡ 1 and ũ2 ≡ −1. Values of ±1 correspond to the wells of the po-
tential W(u) since these are known trivial solutions to (1.1) but one can take more general
functions. The function s determines the subspace of functions that we search for a saddle.

The String method is coded as the following algorithm:

Input: J , ũ1, s, ũ2, tol, hmax,NIt , Nt

1. Compute discrete initial path u(ti) ≈ ui where ti = i/Nt , i = 0, . . . ,Nt . The path U =
{u1, u2, . . . , uNt } is defined as a convex combination of ũ1, s and ũ2 by (2.4).

2. Reparametrize the path U to get points equidistantly distributed in W 1,p(�) norm.
3. Evaluate the steepest descent for all points in U by (2.3).
4. Minimize the path U in the steepest descent direction with constrained maximal step size

by parameter hmax.
5. Reparametrize the path to get equidistantly distributed points in W 1,p(�) norm.
6. Check whether W 1,p(�) norm of the movement of the string is less than the convergence

tolerance tol, or if the number of iterations is more than NIt . If not, go to step 3.
7. Take the point on the path with the highest energy um.

Output: u, residuum of u and the critical-point approximation um.
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Once a saddle point approximation has been located using the String method, we can
either apply Newton’s method or the climbing image method [18] to converge to the saddle
point. One can also continue solutions of (1.1) using pseudo-arclength continuation to path-
follow the solution as an equation parameter is varied to trace out bifurcation diagrams;
see [19] and references therein.

2.2 Implementation

The String method and numerical continuation were implemented using MATLAB R2007b
and R2009a with the nonlinear solver fsolve.

The computations were carried out on DRAGON, a dual core 2.7 GHz PowerPC G5 with
4 GB of RAM, and PHOENIX, a server with two 3 GHz dual core Xeon processors with
8 GB of RAM, both running Mac OS 10.5, and the Cluster DAMADAMA equipped with two
Intel Xeon 5320 CPU 1.86 GHz - 2x4 cores with 16 GB of RAM running under Debian 4.0.

2.3 Convergence of Methods

The numerical computation of nonlinear diffusion problems is known to be a delicate topic,
and so we carry out spatial convergence tests for our numerical discretisations of (1.1).

The two critical parameters governing convergence are p and ε. The parameter ε governs
the sharpness of the interfaces. In particular, as ε → 0 we expect u converges to discontin-
uous solutions in BV ([−1,1]). Hence, for small ε we have a sharper interface, and thus
expect worse convergence.

Correspondingly, one may expect numerical difficulties when p < 2 since the term
|∇u|p−2 may become singular. Furthermore for large p, the nonlinear diffusion is enhanced
also suggesting convergence may be difficult. This intuitive feel for how the convergence
depends on p was proved by Barrett & Liu [3] (see also [6, 17]) for finite-element approxi-
mations of the p-Laplacian problem

−∇ · (|∇u|p−2∇u) = f, in � ⊂ R
2, and u = g on ∂�. (2.5)

The authors considered a regular triangular finite-element discretisation (akin to a 5-point
finite-difference approximation) on a uniform mesh of step size h. If u is only in W

1,p

0 (�)∩
W 2,p(�), reference [6] gives the error bound

‖u − uh‖1,p ≤
{

Chp/2 if p ≤ 2,

Ch2/p if p ≥ 2.
(2.6)

Under additional regularity assumptions, Barrett & Liu [3] were able to prove more optimal
error bounds. In particular, provided that u ∈ W 3,1(�) ∩ C 2,(2−p)/p(�) and p ∈ (1,2), they
were able to show that the error bound is O(h) and in the case p > 2 if u ∈ W 1,∞(�) ∩
W 2,2(�) then the second error bound in (2.6) still holds.

Barrett & Liu also carried out several numerical experiments of the radially symmetric
p-Laplacian problem (2.5) using finite elements on a uniform mesh of step size h. Their
experiments suggest that one can usually expect O(h) convergence in W 1,1(�) and O(h2)

convergence in L∞.
For our convergence tests with p > 2, we concentrate on the convergence of the

monotone fronts connecting ±1 in one-dimension since these solutions creates saddle con-
tinua. A good check for convergence in one-dimension is to compute the derivative of the
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Fig. 3 Finite differences (squares) and Chebyshev (circles) convergence tests for the one-dimensional
bi-stable quasi-linear problem (1.1) with ε = 0.1 and (a) p = 1.75, (b) p = 2, (c) p = 3 and (d) p = 4. Con-
vergence rates for Chebyshev (red, dashed lines) are O(N−9.17

x ), O(N−12.27
x ), O(N−7.26

x ) and O(N−4.79
x )

respectively, whereas convergence rates for finite differences (blue, dash-dotted lines) are O(N−2.74
x ),

O(N−3.16
x ), O(N−2.31

x ) and O(N−2.24
x ) respectively

front-type solutions at the point x∗ such that u(x∗) = 0, and compare with the analytical
result

ux(x
∗) = 1

ε
p′1/p, (2.7)

where 1/p + 1/p′ = 1. This convergence test is carried out in Fig. 3(c) and 3(d) for the
Chebyshev discretisation where we see that the Chebyshev method achieves good conver-
gence O(N−4) for relatively small number of modes N = Nx = Ny = 51. Finite differences
methods appear to be less successful: the error obtained with finite differences is always
above 10−4 with 103 mesh points, whereas Chebyshev error goes below 10−4 for 100 mesh
points. We observe that the rate of convergence for both discretization schemes appears to
be polynomial.

Since fronts do not exist for p ≤ 2, we cannot use (2.7) as a convergence check at x = x∗
and so we plot the absolute error where we compare solutions with the finest mesh approx-
imation; see Fig. 3(a) and 3(b). Here we observe that while the convergence of the finite
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difference scheme is polynomial, the Chebyshev discretization converges exponentially. In
all cases, we see convergence of the discretization schemes giving us confidence in our nu-
merical results. However, we see that the Chebyshev discretization scheme is better than the
finite-difference scheme for all parameter values we are interested in. Hence, in the follow-
ing sections we shall only use the Chebyshev discretization.

3 Results

3.1 1D

In this section, we will investigate the String method applied to one-dimensional p-Laplacian
problem (1.1). Since all solutions of the one-dimensional (1.1) have been characterised and
mapped out by Otta [24], we will be primarily interested in how the String method works in
locating the saddle-continua.

We start by looking at the Laplacian case i.e., p = 2 and set ε = 0.1. In Fig. 4, we
show the convergence string and the corresponding functions along the string’s length. We
initialise the string by setting s(x) = cos(πx) and ũ1 ≡ 1, ũ2 ≡ −1 in (2.4). The converged
string shows a large region of constant energy where we observe that the functions are just
spatial translations of the “front” solution of (1.1). The non-trivial saddle solution of (1.3)
converges to a front solution as ε → 0. At ε = 0.1, the solution numerically still looks like a
front and due to the Neumann boundary conditions at x = 0 and x = 1, the solution maybe
translated in space creating an anomalous saddle-continua which is due to the numerical
approximation of (1.3). Hence, while there is a unique front-type solution satisfying (1.1),
the string method appears to superficially to find a saddle continua.

To demonstrate the String method’s ability to locate saddle-continua, we compute the
strings for ε = 0.2 and p = 1.5,2 and 3; the strings are shown in Fig. 5. All three computed
strings develop a plateau. However, when one looks at the derivative of the energy along the
string (calculated via first-order finite-differences), we immediately observe a significant
difference between the computed paths, see Fig. 5(b). For p = 3, where a saddle-continua
exists, we see that the plateau of the string is very flat for a number of points. This property
is not seen for the p = 1.5 or p = 2 strings where the derivative of the “plateau” is only

Fig. 4 (a) Computed string for p = 2, ε = 0.1 with Nx = 51, Nt = 51. (b) Plot of u(x) along the string. We
see the flat top of the string in (a) corresponds to front-like solutions of (1.1) that are translated in space
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Fig. 5 In panel (a) we show the
computed strings for ε = 0.2 with
Nx = 51, Nt = 51. Panel (b)
shows the gradient of the energy
along the string. Here we see that
the String method is able to
detect the saddle-continua that
exists for p > 2. The L2-norm of
the residual is shown in panel (c).
For p ≥ 2 we observe excellent
convergence of saddle solutions.
In panel (d) we compute the
difference of the strings for p = 3
computed using the H 1(�) and
W1,p(�)-steepest descent

of the order ∼ 10−3. Points on this plateau for p > 2 correspond to solutions of (1.1); see
Fig. 5(c). The saddle continua for p > 2 is due to the existence of front-type solutions
attaining values ±1 that creates a “dead-core” of solutions where the fronts maybe translated
without violating the boundary conditions. These “dead-core” solutions create a continua of
critical points of the saddle-point type.

We have found the String method to be particularly poor at finding saddle solutions in the
singular diffusion case i.e., p < 2; see Fig. 5(c). However, the String method performs very
well for p ≥ 2 and we converge to saddle solutions of (1.1) to within the spatial discretisation
error.

We have found no significant difference in the residual or string if we compute with the
H 1(�)-steepest descent or W 1,p(�)-steepest descent; see Fig. 5(d). Computationally, there
is a considerable advantage in using the H 1(�)-steepest descent direction since one only
needs to solve a linear system for the steepest descent direction.

We also look at computing other saddle-continua in (1.1) where the solutions re-connect
with u ≡ −1. To find these types of solutions, we take the string generator s(x) to be

s(x) = tanh(30(x − 0.3)) − tanh(30(x − 0.7)) − 1. (3.1)

Figure 6 shows the string that is computed with the solutions along the string. In this case, the
dimension of the manifold of the critical points is two and we find that our String method
is only able to detect continua in one of the directions since the computed path is one-
dimensional. Further work needs to be carried out to design an algorithm that can compute
manifolds of saddle-continua of dimension greater than one.

3.2 2D

In this section, we apply the string and continuation methods to solve equation (1.1) in two
spatial dimensions where the numerical shooting method employed by Otta [24] can no
longer be applied.

The choice of initial path for the String method has a significant impact on the type
of saddles that are located. In Table 1, we detail five possible choices for the initial string
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Fig. 6 We show the computed string for p = 3, ε = 0.1, Nx = 51, Nt = 51 with the string generator (3.1).
Panel (a) shows the energy of the string, (b) the gradient of the energy along the string and (c) a plot of the
solutions along the string. We observe that the plateau of the string is flat to within numerical error

Table 1 Initial string generators si leading to saddle solutions ui of (1.1)

String generator si Nodal domains

s1(x, y) = cos(πx) two, separated by x = 0.5

s2(x, y) = cos(πx) − cos(πy) two, separated by y = x

s3(x, y) = cos(πx) cos(πy) four, separated by x = 0.5 and y = 0.5

s4(x, y) = sin(π(x + y)) sin(π(x − y)) four, separated by x = y and y = 1 − x

s5(x, y) = cos(π(x + y)) cos(π(x − y)) five, separated by |x − 0.5| + |y − 0.5| < 0.5

generator si that connects ũ1 ≡ +1 to ũ2 ≡ −1 and classify the generators by the nodal
domains of the generator si .

In Fig. 7, we first present the saddle-type solutions (determined by the string generator
si ) found by the String method for the Laplacian case p = 2. As observed by previous
papers [5], the choice of string generator defines the type of saddle solution one finds e.g.,
the one-dimensional string generator s1(x, y) = cos(πx) leads to the one-dimensional front-
like solutions found in Sect. 3.1.

The Minimum Energy Paths found by the String method using the H 1(�) steepest de-
scent direction for p = 1.5,2, and 3 are shown in Fig. 8 for ε = 0.2; similar MEPs are
found for the string generators s3, s4 and s5. All our numerical investigations have failed to
find saddle-continua in two dimensions for all the string generators s2, . . . , s5. We believe
that this lack of saddle-continua is due to the Neumann boundary conditions preventing any
translations of the solutions.

4 Conclusion

In this paper, we have developed the String method of [15] for the quasi-linear problem (1.1).
The numerical method employed in this paper, allows one also to locate saddle points of J
for domain � ⊂ R

n, n > 1 where the numerical shooting method of Otta [24] can no longer
be applied. We have found that the String method naturally produces paths that can locate
saddle-continua and provide crucial information on the temporal dynamics of the parabolic
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Fig. 7 Saddles solutions of (1.1) with p = 2, ε = 0.2, found from the String method with the string genera-
tors (a) s1(x, y), (b) s2(x, y), (c) s3(x, y), (d) s4(x, y) and (e) s5(x, y). Computational parameters Nt = 21,
Nx = Ny = 51

Fig. 8 Minimum energy paths for (1.1) with (a) ε = 0.1 and (b) ε = 0.2 for p = 1.5,2, and 3. Computational
parameters Nt = 21,Nx = Ny = 51 with the string generator s2(x, y)

p-Laplacian problem (1.5). However, we were unable to locate any saddle-continua in two
dimensions.

Our computations suggest there is no computational benefit to carrying out the steep-
est descent direction in the general W 1,p(�) space. However, it is not clear that this holds
for general quasi-linear PDEs. In our opinion, the String method is significantly more ro-
bust than the standard saddle-locating algorithm [5] since it naturally carries out re-meshing
along the path and minimises the energy of every point along the path.

The numerical methods discussed in Sect. 2, can easily be extended to the general quasi-
linear problem

−∇ · (r(x)ϕ(∇u(x))) + g(x,u(x)) = f (x), x ∈ �, (4.1)
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where g ∈ CAR(�,R), r(x) > 0,∀x ∈ �, f ∈ Lp′
(�), and ϕ is strictly increasing, homo-

geneous function on R.
Our work revealed some directions for future research. Since the String method finds a

stationary path of (2.1), it could be interesting to use path-following techniques to continue
the minimum energy path in p and ε. Also an open question is the proof of optimal con-
vergence results for the Chebyshev discretization scheme since this type of discretisation
scheme seems to be significantly better than the standard 5-point finite-element discretisa-
tion. Finally, to the best author’s knowledge there were no attempts to prove that saddle-
continua do or do not exist in higher-dimensional quasi-linear problem (1.1).
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