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Abstract Homoclinic snaking refers to the bifurcation structure of symmetric localised
roll patterns that are often found to lie on two sinusoidal “snaking” bifurcation curves, which
are connected by an infinite number of “rung” segments along which asymmetric localised
rolls of various widths exist. The envelopes of all these structures have a unique maximum
and we refer to them as symmetric or asymmetric 1-pulses. In this paper, the existence of
stationary 1D patterns of symmetric 2-pulses that consist of two well-separated 1-pulses is
established. Corroborating earlier numerical evidence, it is shown that symmetric 2-pulses
exist along isolas in parameter space that are formed by parts of the snaking curves and the
rungs mentioned above.

Keywords Homoclinic snaking · Isolas · Multi-pulses · Swift–Hohenberg equation

1 Introduction

The emergence of localised patterns in bistable systems has attracted much attention in recent
years with particular emphasis being given to the phenomenon known as homoclinic snaking.
This phenomenon refers to the appearance and disappearance of infinitely many stationary
localised patterns through virtually simultaneous saddle-node bifurcations and, more specif-
ically, to the property that all these emerging patterns are globally connected in parameter
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Fig. 1 In the left panel, the L2-norm of 1-homoclinic orbits of the Swift–Hohenberg equation (1.1) is plotted
against the parameter μ. The three panels to the right show the solution profiles U (x) as functions of x along
one of the rungs that connect the two snaking curves that are plotted as solid and dashed curves

space. In particular, there is an open region in parameter space in which infinitely many
localised patterns coexist. The interior part of these patterns resembles a spatially periodic
structure, so that one can interpret them as periodic waves that are subjected to a local-
ised amplitude modulation. As one follows these patterns in the bifurcation parameter, their
interior domain broadens indefinitely.

In this paper, we focus on one-dimensional patterns. As an example, consider the Swift–
Hohenberg equation

Ut = −(1 + ∂2
x )2U + μU + νU 2 − U 3, x ∈ R, U ∈ R

with ν = 2. Stationary localised patterns of the Swift–Hohenberg equation with ν = 2 can
be computed as homoclinic orbits of the steady-state equation

(1 + ∂2
x )2U − μU − 2U 2 + U 3 = 0 (1.1)

or, equivalently, of the associated first-order system

ux = f (u, μ), u = (u1, u2, u3, u4)
T = (U, Ux , Uxx , Uxxx )

T ∈ R
4

with

f (u, μ) = (u2, u3, u4,−2u3 + (μ − 1)u1 + 2u2
1 − u3

1)
T .

Homoclinic snaking in (1.1) has been discussed in a number of papers, and we refer to [2,4]
for a comprehensive list of references and to [11,16] for two recent reviews that also list
numerous applications in the natural sciences. The characteristic bifurcation diagram for
1-homoclinic orbits to the origin is shown in Fig. 1. It consists of two intertwined snaking
curves corresponding to homoclinic orbits of (1.1) that are symmetric under the reflection
x �→ −x : as shown in the rightmost panels in Fig. 1, the symmetric orbits along the two dif-
ferent snaking curves differ by whether they are symmetric about a maximum or minimum.
The two snaking curves are connected by rungs or ladders that correspond to non-symmetric
homoclinic orbits. We refer to the union of the two snaking curves and the rung branches as
the double-helix structure.

The geometric foundation of homoclinic snaking is well understood. The homoclinic
orbits bifurcate from a heteroclinic cycle that is formed by connecting orbits between the
equilibrium U = 0 and a periodic orbit. A geometric explanation of snaking, based on a
careful inspection of the intersections of the stable and unstable manifolds of the underlying
equilibrium and periodic orbits, has been given in [25]; see also [10]. For the special case
of the Swift–Hohenberg equation, this picture has been put on a firm footing in [9,18] using
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normal-form theory and beyond-all-orders asymptotics. On a general level, the precise link
between the global geometry of the heteroclinic connections and the resulting snaking dia-
grams of both symmetric and non-symmetric solutions has been elucidated in [2]. From a
structural viewpoint, the key ingredients necessary for snaking to occur are reversibility (that
is, the invariance under reflection in x) and, to some extent, the property that the underlying
equation is conservative or Hamiltonian. If the system is not conservative, then snaking may
still occur but the non-symmetric solutions will, in general, correspond to travelling waves
and not to stationary states.

The papers mentioned above focused on 1-homoclinic orbits, that is, on homoclinic solu-
tions that follow the underlying heteroclinic cycle precisely once. The general bifurcation
results by Devaney [12] or Härterich [13] imply that each of the 1-homoclinic orbits described
above will, for each fixed parameter value, be accompanied by families of N -homoclinic solu-
tions that follow the heteroclinic cycle precisely N times provided the underlying equilibrium
is a bi-focus. The results in [12,13] also indicate that, for each N , there will be infinitely many
N -homoclinic orbits that differ by the separation distances between consecutive pulses. Our
goal is to analyse their existence in homoclinic snaking scenarios, where the 1-homoclinic
orbits arise in global bifurcations from heteroclinic cycles. We shall focus on symmetric
2-homoclinic orbits.

Multi-pulse solutions in snaking scenarios were first studied numerically in [14,24], where
it was observed that 2-pulse solutions lie on closed curves near the original snaking curves.
Various different types of isolas that differed by the number of fold bifurcations they con-
tained were found in these two papers. To gain further insight into 2-pulse solutions, we
computed symmetric 2-homoclinic orbits for the Swift–Hohenberg equation (1.1) using the
homoclinic branch-switching method developed in [21] and show the resulting bifurcation
diagram and the associated solution profiles in Fig. 2. This diagram shows the double helix of
symmetric and non-symmetric 1-pulses in grey and a number of closed bifurcation curves1

of symmetric 2-pulses in green and blue. We can see that the branches of 2-pulses follow the
double helix very closely but that all bifurcation curves belonging to 2-pulses are isolas of
figure-eight type. As indicated in Fig. 2, we found a family of stacked isolas that differ by
the widths of each of the pulses that form the associated 2-pulse profiles. If we fix the width
of each pulse, then we found a family of nested isolas that are parametrized by a discrete
set of increasing separation distances between the two pulses. We often encountered isolas
that initially appeared to contain more fold bifurcations than present in a single figure-eight
isola, but these isolas were found to break up into several figure-eight isolas once the step
size of the continuation scheme was decreased sufficiently. This observation was also made
independently in the recent work [6].

One can think of 2-pulses as being composed of two pulses that both mirror the behav-
iour of the symmetric and non-symmetric pulses along the parts of the original double
helix that are closest to the isola. It is interesting to note that, along each rung, there are
two non-symmetric 1-pulses that are related by symmetry. In particular, we can create two
different symmetric 2-pulses along the rungs by forming a 2-pulse from each of the two
non-symmetric 1-pulses. This is further illustrated in Fig. 3. As shown there, we found two
different types of 2-pulses that can be characterised as follows. In the center x = 0 of
each 2-pulse with profile U (x), we have Ux (0) = Uxxx (0) = 0. If x = 0 corresponds
to a positive maximum or a negative minimum of the profile, then the solution behaves

1 Plotted are the L2-norm of 1-pulses and half the L2-norm of 2-pulses to make a comparison meaningful.
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Fig. 2 Plotted are numerically computed figure-eight isolas associated with 2-homoclinic orbits of the Swift–
Hohenberg equation (1.1). If we fix the separation distance 2L0 between the two pulses, we find a family of
stacked isolas whose solution profiles differ by the width 2L1 of each individual pulse. If we fix the width
of each pulse, we find a family of nested isolas whose profiles differ by the separation distance between the
two pulses as illustrated by the profiles in panels (i, ii) that lie on two different isolas near the bullet in the left
panel

Fig. 3 Shown are numerical computations of two different types of 2-pulse solutions that differ by whether
their central point is a positive maximum or negative minimum (left panels) or a negative maximum or positive
minimum (right panels)

as shown in the left panels in Fig. 3. On the other hand, the behaviour will be as shown
in the right panels in Fig. 3 if the center x = 0 is a negative maximum or a positive
minimum of the solution profile. The existence of these different types of 2-homoclinic
orbits is a typical phenomenon, as the analysis in [8] shows in a slightly different con-
text.

In this paper, we will refine these results and put them on an analytic footing. We will
show that the isolas of figure-eight type are the only possible bifurcation curves for sym-
metric 2-homoclinic orbits provided that the width of the pulses is sufficiently large and that
they are sufficiently well separated. Our analysis follows the approach in [2]. In Sect. 2, we
present our assumptions, which are slightly more restrictive than those in [2], and our main
results. The existence analysis of 2-pulses is then carried out in Sect. 3. In Sect. 4, we give a
geometric interpretation of our results and outline generalizations to non-symmetric 2-pulses
and, more generally, to N -pulses.
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2 Existence results for 2-pulses

We consider four-dimensional systems

ux = f (u, μ), u ∈ R
4, μ ∈ R, (2.1)

where f will be a smooth vector field. We shall assume that (2.1) possesses a heteroclinic
cycle between the equilibrium u = 0 and a periodic orbit, and are interested in locating
homoclinic orbits near this cycle.

Firstly, however, let us specify the general properties of the vector field f . We require that
(2.1) is both reversible and Hamiltonian. More precisely, we assume the following.

Hypothesis (H1) There exists a linear map R : R
4 → R

4 with R2 = 1 and dim Fix(R) = 2
so that f (Ru, μ) = −R f (u, μ) for all (u, μ).

Reversibility as encoded in Hypothesis (H1) implies that Ru(−x) satisfies (2.1) whenever
u(x) does. Solutions with u(0) ∈ Fix(R) := {u ∈ R

4 : Ru = u} are said to be symmetric
as they satisfy u(x) = Ru(−x) for all x .

Hypothesis (H2) There exists a smooth function H : R
4 × R → R with H(Ru, μ) =

H(u, μ), such that

f (u, μ) = J Hu(u, μ), J =
(

0 −1
1 0

)
,

and H(0, μ) = 0 for all μ.

Next, we introduce the solutions of (2.1) that we will consider. We shall assume that there
is a compact interval J ⊂ R with nonempty interior J̊ such that the following hypotheses
are met for μ ∈ J .

Hypothesis (H3) The origin u = 0 is a saddle-focus of (2.1) for all μ ∈ J , that is, the
linearised vector field has a quadruplet of complex conjugate eigenvalues so that there is a
constant κ > 0 with

spec ( fu(0, μ)) = {±α0(μ) ± iβ0(μ)}
and α0(μ), β0(μ) ≥ κ > 0 for all μ ∈ J .

Hypothesis (H4) We assume that (2.1) has, for each μ ∈ J , a periodic orbit γ (x, μ) with
minimal period 2π which satisfy the following for each μ ∈ J :

(i) The family γ (x, μ) depends smoothly on μ.
(ii) γ (x, μ) is symmetric with γ (0, μ) ∈ Fix(R).

(iii) H(γ (x, μ), μ) = 0 and Hu(γ (x, μ), μ) �= 0 for all x ∈ R.
(iv) γ (x, μ) has two positive Floquet multipliers e±2α1(μ) with α1(μ) ≥ κ > 0 uniformly

in μ ∈ J .

Reversibility implies that both the spectrum of u = 0 and the set of characteristic expo-
nents of γ (x, μ) are symmetric under multiplication by −1. Furthermore, the Hamiltonian
property of (2.1) allows us to restrict the search for connecting orbits to the zero level
set of H.

The above setting fits into the context of [2]. Indeed, Hypotheses (H2) and (H3) are more
restrictive than the corresponding assumptions made in [2], where we assumed only that f
has a first integral and that the equilibrium u = 0 is hyperbolic without assuming anything
else about its eigenvalues. We now recall the following result from [2].
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Lemma 2.1 ([2]) Assume that Hypotheses (H1)–(H4) are met, then there exist a δ > 0,
a smooth reversible change of coordinates near γ (·, μ), and smooth real-valued functions
hc, hs

j and hu
j with j = 1, 2 so that (2.1) restricted to the zero level set of H is, for all μ ∈ J ,

of the form

vc
x = 1 + hc(v, μ)vsvu

vs
x = −[α1(μ) + hs

1(v, μ)vs + hs
2(v, μ)vu]vs (2.2)

vu
x = [α1(μ) + hu

1(v, μ)vs + hu
2(v, μ)vu]vu,

where v = (vc, vs, vu) ∈ S1 × I × I with I = [−δ, δ]. The reverser R acts on v via
R(vc, vs, vu) = (−vc, vu, vs).

The dynamics we are interested in is organised by heteroclinic cycles that connect the
equilibrium u = 0 and the periodic orbit γ . The underlying heteroclinic orbits correspond
to intersections of the stable manifold W s(0, μ) of the equilibrium u = 0 and the strong
unstable fibres W uu(γ (ϕ, μ), μ) of the periodic orbit γ . To capture these intersections, we
define the sections

�in
1 := S1 × {vs = δ} × I, �out

1 := S1 × I × {vu = δ}
in the Fenichel coordinates of Lemma 2.1 near the periodic orbit γ (·, μ) in the zero level set
of H and set

� := {
(ϕ, μ) ∈ S1 × J : W s(0, μ) ∩ W uu(γ (ϕ, μ), μ) ∩ �out

1 �= ∅}
. (2.3)

We now state two hypotheses that encapsulate the geometric assumptions we impose on the
set � and the various invariant manifolds introduced above. These hypotheses are illustrated
in Figs. 4 and 5 and will be motivated in more detail below. First, we assume that � is the
graph of a function that maps S1 into J̊ .

Hypothesis (H5) The set � is the graph of a smooth function z : S1 → J̊ . Furthermore,
we assume that z′(ϕ) = 0 if and only if ϕ ∈ {m, M} and that z′′(m,M) �= 0. In other
words, z has precisely two critical points, namely a minimum and a maximum, which are
both nondegenerate.

Thus, we assume that the stable manifold W s(0, μ) intersects the strong unstable fiber of
γ (ϕ) in the section �out

1 if, and only if, μ = z(ϕ). Hypothesis (H5) also assumes that the
function z(ϕ) has the shape shown in Fig. 5. Specifically, heteroclinic orbits between u = 0
and the periodic orbit γ are created and destroyed in two saddle-node bifurcations that occur
when μ = z(ϕ) with ϕ = m,M. Hypothesis (H5) can be relaxed considerably, and we will
discuss this in detail in Sect. 4.

Fig. 4 The geometry of the stable manifold W s(0, μ), the unstable manifold W u(γ, μ) and the strong unstable
fibers W uu(γ (ϕ), μ) that we assumed in Hypotheses (H5)–(H6) is illustrated
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Fig. 5 Shown are the function
μ = z(ϕ) and the snaking
diagram of symmetric
1-homoclinic orbits

Hypothesis (H6) There exist a constant η > 0 and a smooth function g : S1 × J → I so
that

W s(0, μ) ∩ �out
1 = {(vc, vs, vu) = (ϕ, g(ϕ, μ), δ) : ϕ ∈ S1}

for each μ ∈ J and |gμ(ϕ, μ)| ≥ η > 0 for all (ϕ, μ).

Hypothesis (H6) makes two different assumptions. First, we assume that the parame-
ter μ moves the stable manifold W s(0, μ) up and down in a monotonic fashion relative
to the unstable manifold W u(γ (·, μ), μ) of the periodic orbit. This assumption is satisfied,
for instance, for near-integrable systems such as the normal form of a Hamiltonian–Hopf
bifurcation, which corresponds to a Turing bifurcation of the underlying partial differential
equations; see [25] and the references therein. The second assumption in Hypothesis (H6)
is that W s(0, μ) is a graph over W u(γ (·, μ), μ) inside the section �out

1 . In particular, we
assume that the manifold W s(0, μ) intersects the section �out

1 along a circle for all μ ∈ J .
This assumption can be relaxed, and we refer to Sect. 4 for details.

Note that the definition of � in (2.3) and Hypotheses (H5)–(H6) imply that

g(ϕ, μ) = 0 ⇐⇒ μ = z(ϕ). (2.4)

If Hypotheses (H1)–(H6) are met, then (2.1) exhibits homoclinic snaking. More precisely,
it was shown in [2] that there are constants κ > 0, L∗ � 1, and functions μ∗(L1, ϕ) and
Z0(L1, ϕ) with

μ∗(L1, ϕ) = z(L1 + ϕ) + O
(

e−κL1
)

,

Z0(L1, ϕ) = z(L1 + ϕ) − z(L1 − ϕ) + O
(

e−κL1
)

, L ≥ L∗

and Z0(L1,−ϕ) = −Z0(L1, ϕ) such that the following holds. Equation 2.1 has a symmetric
1-homoclinic orbit to the origin that spends time 2L1 near the periodic orbit precisely when
μ = μ∗(L1, 0) or μ = μ∗(L1, π); see Fig. 5 for an illustration. Furthermore, non-symmetric
1-homoclinic orbits exist precisely when μ = μ∗(L1, ϕ) and Z0(L1, ϕ) = 0, and it is not
difficult to see that this gives the horizontal rungs curves that connect the two snaking curves
shown in Fig. 5; we refer to [2] for further details. In particular, given that we know the
function μ∗(L1, ϕ), the information about both symmetric and non-symmetric 1-homoclinic
orbits is contained in the function Z0(L1, ϕ) or, more precisely, in its zero level set Z−1

0 in
the (ϕ, L1)-plane. This is illustrated further in Fig. 6, which contains the vertical lines ϕ = 0
and ϕ = π in Z−1

0 as well as the connecting rungs curves corresponding to non-symmetric
1-pulses that emerge via pitchfork bifurcations from symmetric 1-pulses at the discrete set

L1 = Lϕ
i (n) = i + ϕ + 2πn + O(e−κn), i = m, M, ϕ ∈ {0, π}, n ≥ n∗
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Fig. 6 The bifurcation curves of symmetric (labelled sym) and non-symmetric (labelled non-sym) 1-ho-
moclinic orbits are shown in the (ϕ, L1) and the (μ, L1)-planes. Non-symmetric 1-pulses bifurcate from
symmetric 1-pulses at the pitchfork bifurcation points shown as bullets. Symmetric 2-homoclinic orbits exist
on isolas near the original snaking curves

of bifurcation points. Recall here that m and M correspond, respectively, to the minimum
and maximum of the function z(ϕ). For each fixed n, the set Z−1

0 encloses precisely four
open rectangular sets that we denote by Q j (n) with j = 0, . . . , 3. We can now state our
result on the existence of 2-homoclinic orbits.

Theorem 1 Assume that Hypotheses (H1)–(H6) are met. There exist integers m∗, n∗ � 1
such that, for each pair (m, n) of integers with m ≥ m∗ and n ≥ n∗, there are precisely two
closed curves without self-intersection inside each rectangular set Q j (n) with j = 0, . . . , 3
along which 2-homoclinic orbits with width L1 ≈ n and separation distance L0 ≈ m exist.
Furthermore, for each fixed n, these curves converge in the symmetric Hausdorff distance to
the boundaries of the sets Q j (n) as m → ∞.

The theorem is vague on how the integers m and n relate to the transition times L0 and
L1. Roughly speaking, n measures how many times the 2-homoclinic orbits winds around
the periodic orbit, while m measures how many times the 2-homoclinic orbit winds around
the equilibrium during its passage near u = 0: recall that we assumed that u = 0 is a
bi-focus. The precise relation between (m, n) and (L0, L1) will become clear during the
proof in Sect. 3.

For each fixed pair (m, n), there are four symmetric 2-pulse isolas in the union Q0(n) ∪
Q1(n). As we shall see in the course of the proof, the profiles of the associated symmetric
2-pulses along these four isolas differ in the following way. For j = 1, . . . , 4, let u( j)(0) ∈
Fix(R) denotes the value of the symmetric 2-pulse on the j th isola at its point of symmetry,
then u( j)(0) lies in the j th quadrant of the two-dimensional space Fix(R) upon ordering
the four isolas appropriately and choosing an appropriate coordinate system in Fix(R). In
particular, for the Swift–Hohenberg equation, we can take (U, Uxx ) as the coordinates in
Fix(R), so that x = 0 corresponds to a positive or negative maximum or a positive or neg-
ative minimum of the profile U (x) along the four isolas. An analogous statement is true for
the four isolas in the set Q2(n) ∪ Q3(n).

3 Bifurcation equations for symmetric 2-pulses

We are interested in constructing symmetric 2-homoclinic orbits to the equilibrium u = 0 that
remain for a prescribed time 2L0 near the equilibrium u = 0 and for 2L1 time units near the
periodic orbit γ (·, μ). Our strategy for finding 2-pulses is illustrated in Fig. 7 and will now be
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Fig. 7 Illustrated are the underlying heteroclinic cycle between u = 0 and the periodic orbit γ , the location
of the various sections we shall use, the fixed-point space Fix0(R) near u = 0, and three solution pieces that
we match together to construct 2-pulses

outlined in more detail. Let Fix0(R) be the fixed-point space of R restricted to some neigh-
borhood of the equilibrium u = 0, and denote by Fixout

1 (R) the pull-back of Fix0(R) to the
section �out

1 under the flow. Symmetric 2-homoclinic orbits then correspond to intersections
of Fixout

1 (R) with the unstable manifold W u(0, μ) of the equilibrium u = 0 tracked through
a neighborhood of the periodic orbit γ (·, μ). We will prove that Fixout

1 (R) is C1-close to the
stable manifold W s(0, μ) of u = 0. As we shall see, this property implies that the bifurcation
equations for symmetric 2-homoclinic orbits can be viewed as symmetry-breaking perturba-
tions of the bifurcation equations for 1-homoclinic orbits. An essential feature is that these
perturbations do not change sign, which will imply that symmetric 2-homoclinic orbits exist
along closed curves in the (ϕ, L)-plane as illustrated in Fig. 6. On a technical level, we use
a smooth, reversible, symplectic transformation into normal form to capture the dynamics
near u = 0, while we shall use the Fenichel coordinates from Lemma 2.1 to track solutions
as they pass near the periodic orbit.

3.1 Dynamics near the origin

We first consider the local dynamics near u = 0. Hypotheses (H1)–(H3) together with the
results in [3,19,20] imply that there is a smooth reversible symplectic coordinate transforma-
tion from u ∈ R

4 to new coordinates (p, q) ∈ R
2 × R

2 with p = (p1, p2) and q = (q1, q2)

such that the Hamiltonian H in the new variables is given by

H(p, q, μ) = H̃(ι, μ) = α0(μ)ι1 + β0(μ)ι2 + O(|ι|2),
where

ι1 = p1q1 + p2q2, ι2 = p1q2 − p2q1

are invariants, while the reverser R is given by

R(p1, p2, q1, q2) = (q2, q1, p2, p1).

Using the above normal form of the Hamiltonian and the symplectic form J , we see that the
differential equation near u = 0 becomes

px =
[(−α0(μ) β0(μ)

−β0(μ) −α0(μ)

)
+ O(|ι|)

]
p, qx =

[(
α0(μ) β0(μ)

−β0(μ) α0(μ)

)
+ O(|ι|)

]
q.

In particular, the local stable manifold W s(0, μ) of u = 0 is given by W s(0, μ) = {(p, 0) :
p near zero}. Alternatively, we can use the polar coordinates p = reiφ and the invariants
ι ∈ R

2 to write the differential equation near (p, q) = 0 as
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rx = −H̃ι1(ι, μ)r = −[α0(μ) + O(ι)]r
φx = −H̃ι2(ι, μ) = −β0(μ) + O(ι) (3.1)

ιx = 0.

Our first aim is to define a transverse section �in
0 centered at r = δ inside H−1(0). First, the

zero level set of H is determined by

H(p, q, μ) = H̃(ι, μ) = α0(μ)ι1 + β0(μ)ι2 + O(|ι|2) = 0,

which can be solved uniquely for ι1 as a function of (ι2, μ) to get

ι1 = ι∗1(ι2, μ) = −β0(μ)

α0(μ)
ι2 + O(|ι2|2).

The desired two-dimensional section �in
0 inside the zero level set of H is now given by

�in
0 := {

(r, φ, ι1, ι2) = (δ, φ, ι∗1(ι2, μ), ι2) : (φ, ι2) ∈ S1 × I0
}

with μ ∈ J , where I0 is a sufficiently small open interval that contains zero. Next, we
consider the fixed-point space Fix0(R) of the reverser near the origin. In the new variables
(r, φ, ι), we have

Fix0(R) = {
(p, q) : q = (p2, p1), p ∈ R

2}
= {

(r, φ, ι) : ι = (2p1 p2, p2
1 − p2

2) = r2(sin 2φ, cos 2φ)
}
.

Solving

ι1 = ι∗1(ι2, μ), ι = r2(sin 2φ, cos 2φ),

for φ as a function of (r, μ), we obtain four solution branches given by

φ = φ∗
j (r, μ) = φ∗

j (μ) + O(r2), j = 0, . . . , 3,

where

φ∗
j (μ) := φ∗(μ) + jπ

2
, φ∗(μ) := −1

2
arctan

β0(μ)

α0(μ)
∈

(π

4
,
π

2

)

for j = 0, . . . , 3. In particular, we have

Fix0(R) ∩ H−1(0) =⋃
j=0,...,3

{
(r, φ, ι) : ι = r2(sin 2φ∗

j (r, μ), cos 2φ∗
j (r, μ)), φ = φ∗

j (r, μ), 0 ≤ r ≤ r0

}
.

Note that the curves associated with j = 0, . . . , 3 lie in the ( j + 1)th quadrant of the two-
dimensional fixed-point space Fix(R). We now pull these curves back until they intersect the
section �in

0 that we defined above.

Lemma 3.1 The pull-back Fixin
0 (R) of Fix0(R) ∩ H−1(0) under the flow to the section �in

0
is the union of the four curves

(φ, ι2) = (φ̃∗
j , ι̃

∗
j )(L0, μ), L0 � 1, μ ∈ J

with

φ̃∗
j (L0, μ) = φ∗

j (μ) + β0(μ)L0 + O(L0e−2α0(μ)L0)

ι̃∗j (L0, μ) = δ2 cos(2φ∗
j (μ))e−2α0(μ)L0

[
1 + O(e−2α0(μ)L0)

]
,
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Fig. 8 Shown are two of the four curves whose union is the pull-back Fixin
0 (R) of Fix0(R) in the section

�in
0 that is parametrized by (ϕ, ι2 ∈ S1 × I ). Note that the section is a cylinder, so that the vertical lines ϕ = 0

and ϕ = 2π are identified, and that ι2 = 0 corresponds to the stable manifold W s (0, μ)

for j = 0, . . . , 3, where L0 � 1 denotes the time needed for the associated solution to go
from �in

0 to Fix0(R).

Since

W s
loc(0, μ) ∩ �in

0 = {(r, φ, ι) = (δ, φ, 0, 0) : φ ∈ S1},
we see that the set Fixin

0 (R), which is parametrized by L0, is pointwise O(L0e−2α0(μ)L0)-close
to W s

loc(0, μ), and we refer to Fig. 8 for an illustration of the geometry.

Proof Recall from (3.1) that ι(x) = ι is independent of x . We require that (r(L0), φ(L0), ι)

∈ Fix0(R ∩ H−1(0), which gives

ι = r(L0)
2(sin 2φ(L0), cos 2φ(L0)), φ(L0) = φ∗

j (μ) + O(r(L0)
2). (3.2)

Next, we solve (3.1) with r(0) = δ to get

r(x) = δe−[α0(μ)+O(r(L0)2)]x , φ(x) = φ(0) − [β0(μ) + O(r(L0)
2)]x

for 0 ≤ x ≤ L0. Thus, we obtain

r(L0) = δe−α0(μ)L0
[
1 + O(e−2α0(μ)L0)

]

and therefore

φ(L0) = φ(0) − [β0(μ) + O(e−2α0(μ)L0)]L0.

The condition (3.2) gives

φ(0) = φ∗
j (μ) + β0(μ)L0 + O(L0e−2α0(μ)L0),

and the assertions in the lemma follow now easily. ��

3.2 The transition map from �in
0 to �out

1

Our goal is to characterise the pull-back Fixout
1 (R) ⊂ �out

1 of the set Fixin
0 (R) under the flow.

Hypothesis (H6) implies that the transition map

T : �in
0 −→ �out

1

that is induced by the backward flow can be written as

(vc, vs) = T (φ, ι2, μ) = (
ϕ∗(φ, μ), g(ϕ∗(φ, μ), μ)

) + b(φ, ι2, μ)ι2,
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Fig. 9 Illustrated is the action of T on Fixin
0 (R) and the interpretation of the decomposition T (φ, ι2, μ) =

(ϕ1, g(ϕ1, μ) + vs
1)

where b(ϕ, ι2, μ) is smooth. The map ϕ∗(·, μ) : S1 → S1 is a diffeomorphism for each
μ ∈ J and can therefore be written as

ϕ∗(φ, μ) = σ [φ + a(φ, μ)], (3.3)

where σ = ±1 indicates whether the diffeomorphism ϕ∗(·, μ) preserves orientation or not
and where a(φ, μ) is 2π -periodic in φ with aφ(φ, μ) > −1 for all (φ, μ). It will be conve-
nient to put the transition map into the form

(ϕ1, g(ϕ1, μ) + vs
1) = T (φ, ι2, μ)

for appropriate values of (ϕ1, v
s
1); see Fig. 9. Writing b = (bc, bs), we find that

ϕ1 = ϕ∗(φ, μ) + bc(φ, ι2, μ)ι2

and

vs
1 = g(ϕ∗(φ, μ), μ) + bs(φ, ι2, μ)ι2 − g(ϕ1, μ)

= g(ϕ∗(φ, μ), μ) − g(ϕ∗(φ, μ) + bc(φ, ι2, μ)ι2, μ) + bs(φ, ι2, μ)ι2

= −gϕ(ϕ∗(φ, μ), μ)bc(φ, ι2, μ)ι2 + O(|ι2|2) + bs(φ, ι2, μ)ι2

= [
bs(φ, 0, μ) − gϕ(ϕ∗(φ, μ), μ)bc(φ, 0, μ) + O(|ι2|)

]
ι2

= [d(φ, μ) + O(|ι2|)] ι2,

where

d(φ, μ) := det D(φ,ι2)T (φ, 0, μ)

Dφϕ∗(φ, μ)

is 2π-periodic in φ with |d(φ, μ)| ≥ η > 0 for (φ, μ) ∈ S1 × J .
Lemma 3.1 shows that the set Fixin

0 (R) ⊂ �in
0 , in whose image under T we are interested,

consists of the four curves

φ = φ̃∗
j (L0, μ) = φ∗

j (μ) + β0(μ)L0 + O(L0e−2α0(μ)L0)

ι2 = ι̃∗j (L0, μ) = δ2 cos(2φ∗
j (μ))e−2α0(μ)L0

[
1 + O(e−2α0(μ)L0)

]

with j = 0, . . . , 3, where L0 � 1 and μ ∈ J . Substituting this parametrization of Fixin
0 (R)

into the expression for (ϕ1, v
s
1) and using (3.3), we obtain that the pull-back Fixout

1 (R) ⊂ �out
1

is given by

Fixout
1 (R) : (vc, vu) = (ϕ1, g(ϕ1, μ) + vs

1) (3.4)
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with

ϕ1 = ϕ1(L0, μ) = ϕ∗(φ, μ) + bc(φ, ι2, μ)ι2

= σ
[
φ∗

j (μ) + β0(μ)L0 + a(φ∗
j (μ) + β0(μ)L0, μ) + O(L0e−2α0(μ)L0)

]
(3.5)

vs
1 = vs

1(L0, μ) = [d(φ, μ) + O(|ι2|)] ι2

= δ2 cos(2φ∗
j (μ))

[
d(σ (φ∗

j (μ)+β0(μ)L0), μ)+O(L0e−2α0(μ)L0)
]

︸ ︷︷ ︸
=:d j (L0,μ)

e−2α0(μ)L0 , (3.6)

where |d j (L0, μ)| ≥ η > 0 uniformly in L0 � 1 and μ ∈ J .

3.3 Matching near the periodic orbit

Using the results obtained above, the problem of finding symmetric 2-homoclinic orbits of
(2.1) is now equivalent to finding solutions v(x) of (2.2) in S1 × I × I that satisfy

v(−L1) ∈ W u(0, μ) ∩ �in
1 , v(L1) ∈ Fixout

1 (R) ⊂ �out
1 (3.7)

for some L1 � 1. The next lemma gives a detailed description of solutions that stay near the
periodic orbit for sufficiently large prescribed times.

Lemma 3.2 [2] There exist positive constants L∗ and κ so that the following is true: For
each L1 > L∗, ϕ ∈ S1 and μ ∈ J , there is a unique solution v(x), also referred to as
v(x, ϕ, μ), of (2.2) that is defined for x ∈ [−L1, L1] and satisfies

v(−L1) ∈ �in
1 , v(L1) ∈ �out

1 , vc(0) = ϕ, v(x) ∈ S1 × I × I, ∀ x ∈ [−L1, L1].
Furthermore, we have

v(−L1) =
(
ϕ − L1 + O

(
e−κL1

)
, δ, δe−2α1(μ)L1

(
1 + O(e−κL1)

))

v(L1) =
(
ϕ + L1 + O

(
e−κL1

)
, δe−2α1(μ)L1

(
1 + O

(
e−κL1

))
, δ

)

v(0) =
(
ϕ, δe−α1(μ)L1

(
1 + O

(
e−κL1

))
, δe−α1(μ)L1

(
1 + O

(
e−κL1

)))
. (3.8)

The solution v(x) is smooth in (L1, ϕ, μ), and the error estimates in (3.8) can be differenti-
ated. Furthermore, we have

v(x,−ϕ,μ) = Rv(−x, ϕ, μ), ϕ ∈ S1, |x | ≤ L1, μ ∈ J. (3.9)

In particular, the solution v(x, ϕ, μ) is R-reversible with v(0) ∈ Fix(R) if and only if ϕ ∈ �.

Lemma 3.2 shows that v(x) = v(x, ϕ, μ) for an appropriate value of ϕ ∈ S1, while (3.9)
implies that v(−L1, ϕ, μ) ∈ W u(0, μ)∩�in

1 if and only if v(L1,−ϕ,μ) ∈ W s(0, μ)∩�out
1 .

Thus, using also Hypothesis (H6) and (3.4)-(3.6), we see that (3.7) is equivalent to

vs(L1,−ϕ,μ) = g(vc(L1,−ϕ,μ), μ)

vs(L1, ϕ, μ) = g(ϕ1(L0, μ), μ) + vs
1(L0, μ)

vc(L1, ϕ, μ) = ϕ1(L0, μ).
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Instead of this system, we will use the equivalent, but slightly more convenient, formulation

vs(L1,−ϕ,μ) = g(vc(L1,−ϕ,μ), μ) (3.10)

vs(L1, ϕ, μ) = g(vc(L1, ϕ, μ), μ) + vs
1(L0, μ) (3.11)

vc(L1, ϕ, μ) = ϕ1(L0, μ). (3.12)

We remark that (ϕ1, v
s
1) depends on j = 0, . . . , 3, but we will fix j from now on and omit

the dependence on j .
First, we solve (3.10). Using the expansions for (vc, vs) from (3.8), the fact (2.4) that

g(ϕ, μ) = 0 if and only if μ = z(ϕ), and the property |gμ(ϕ, μ)| ≥ η > 0 from Hypothe-
sis (H6), we obtain via the implicit function theorem that there is a function e(L1, ϕ) such
that (3.10) holds if and only if

μ = μ∗(L1, ϕ) := z(L1 − ϕ) + e(L1,−ϕ), e(L1, ϕ) = O(e−κL1) (3.13)

uniformly in L1 � 1 and ϕ ∈ S1.
Next, consider (3.11) and note that the unique solution of (3.11) with vs

1 = 0 is given by
μ = z(L1 + ϕ) + e(L1, ϕ). Thus, we set

μ = z(L1 + ϕ) + e(L1, ϕ) + μ2 =: μ1(L1, ϕ) + μ2 (3.14)

and consider (3.11) in the form

g(vc(L1, ϕ, μ), μ) − vs(L1, ϕ, μ) + vs
1(L0, μ) = 0,

which then becomes

g(vc(L1, ϕ, μ1(L1, ϕ) + μ2), μ1(L1, ϕ) + μ2) − vs(L1, ϕ, μ1(L1, ϕ) + μ2)

(3.15)

+vs
1(L0, μ1(L1, ϕ) + μ2) − vs

1(L0, μ1(L1, ϕ)) = −vs
1(L0, μ1(L1, ϕ)).

The preceding discussion shows that the left-hand side vanishes when μ2 = 0, and (3.15)
can therefore be written as

g̃(L0, L1, ϕ, μ2)μ2 = −vs
1(L0, μ1(L1, ϕ)), (3.16)

where

g̃(L0, L1, ϕ, μ2) = gμ(L1 + ϕ, z(L1 + ϕ)) + O(e−κL0 + e−κL1 + |μ2|) (3.17)

for some positive κ uniformly in L0, L1 � 1, ϕ ∈ S1, and |μ2| small. Equation 3.6 shows
that

vs
1(L0, μ1(L1, ϕ)) = d j (L0, μ1(L1, ϕ))e−2α0(μ1(L1,ϕ))L0 ,

and we conclude from (3.17) and Hypothesis (H6) that (3.16) has a unique solution μ2 =
μ2(L0, L1, ϕ) and that this solution has the expansion

μ2(L0, L1, ϕ) = −
[

d j (L0, z(L1 + ϕ))

gμ(L1 + ϕ, z(L1 + ϕ))
+ O(e−κL0 + e−κL1)

]
︸ ︷︷ ︸

=:d̃ j (L0,L1,ϕ)

e−2α0(μ1(L1,ϕ))L0 .

(3.18)

Note that η1 ≥ |d̃ j (L0, L1, ϕ)| ≥ η0 > 0 and that the derivatives of d̃ j with respect to any
of its arguments are bounded by η1 uniformly in L0, L1 � 1 and ϕ ∈ S1.
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Fig. 10 The left panel illustrates the zero level set �0 of the function Z0(L1, ϕ) in the cylinder (L∗, ∞)× S1.
The set �0 contains the horizontal lines ϕ = 0 and ϕ = π as well as infinitely many connecting rung curves
that begin and end at the critical points L1 = L0,π

m,M(n) along the horizontal lines. The right panel shows one
of the rectangles Q enclosed by �0 together with the critical points and the zero level set �(L0) of Z(·; L0)

for fixed L0

The solution μ = μ∗(L1, ϕ) of (3.10) from (3.13) and the solution μ = μ1(L1, ϕ) +
μ2(L0, L1, ϕ) of (3.11) from (3.14) and (3.18) need to coincide. Inspecting their expansions,
we see that these solutions coincide if and only if

Z(L1, ϕ; L0) := μ1(L1, ϕ) + μ2(L0, L1, ϕ) − μ∗(L1, ϕ)

= z(L1 + ϕ) + e(L1, ϕ) − z(L1 − ϕ) − e(L1,−ϕ)︸ ︷︷ ︸
=:Z0(L1,ϕ)

+μ2(L0, L1, ϕ)

= 0. (3.19)

Note that Z0(L1,−ϕ) = −Z0(L1, ϕ) for all (L1, ϕ), which implies that Z0(L1, 0) =
Z0(L1, π) = 0 for all L1. It was shown in [2] under hypotheses that are weaker than ours that
�0 := Z−1

0 (0) looks as shown in Fig. 10. Furthermore, it was shown there that the critical
points of Z0 inλ0 are given by (L1, ϕ)withϕ ∈ � := {0, π} and L1 = i −ϕ+2πn+O(e−κn)

for i = m, M and integers n � 1, where we recall that m and M denote, respectively, the
minimum and maximum of the function z. Finally, it follows from Hypothesis (H5) that the
critical points of Z0 in �0 are nondegenerate since their Hessian

D2 Z0(L1, ϕ) =
(

0 2z′′(i ) + O(e−κn)

2z′′(i ) + O(e−κn) 0

)
, i = m, M (3.20)

is nondegenerate.
Our goal is to investigate the nature of the zero level set

�(L0) := {(L1, ϕ) : Z(L1, ϕ; L0) = 0}
of Z(L1, ϕ; L0) for each fixed value of L0 � 1. Note that μ2 is exponentially small in L0

so that Z0 and Z(·; L0) are close for each L0 � 1, and we therefore expect that �(L0) is
close to �0. Moreover, using (3.18), we see that, for (L1, ϕ) ∈ �0 and L0 � 1, we have

Z(L1, ϕ; L0) = Z0(L1, ϕ) + μ2(L0, L1, ϕ)

= μ2(L0, L1, ϕ) = d̃ j (L0, L1, ϕ)︸ ︷︷ ︸
|...|≥η0>0

e−2α0(μ1(L1,ϕ))L0 �= 0 ∀(L1, ϕ) ∈ �0,

so that �0∩�(L0) = ∅ for all L0 � 1. First, we consider the critical points of Z for fixed L0,
which must lie near the critical points of Z0. Thus, pick one of the critical points (L0

1, ϕ
0)
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of Z0 in �0 that we discussed above and write (L1, ϕ) = (L0
1, ϕ

0) + (L̃, ϕ̃). Expanding
Z(L1, ϕ; L0) in (L̃, ϕ̃) for fixed L0 and recalling (3.18) and (3.20), we see that

D(L1,ϕ) Z(L1, ϕ; L0) = DZ0(L0
1 + L̃, ϕ0 + ϕ̃) + D(L1,ϕ)μ2(L0, L0

1 + L̃, ϕ0 + ϕ̃)

= D2 Z0(L0
1, ϕ

0)(L̃, ϕ̃)

+O
(
(e−κL0 + |L̃| + |ϕ̃|)(|L̃| + |ϕ̃|)

)
+ D(L1,ϕ)μ2(L0, L0

1, ϕ
0)

= 0

can be solved uniquely for (L̃, ϕ̃) for each L0 � 1 and that this solution satisfies

(L̃, ϕ̃) = O(e−2α0
(
μ1(L0

1,ϕ0)
)
L0).

Furthermore, the value of Z(L1, ϕ; L0) at these L0-dependent critical points is given by

Z(L0
1 + L̃, ϕ0 + ϕ̃; L0) = O((|L̃| + |ϕ̃|)2) + μ2(L0, L0

1 + L̃, ϕ0 + ϕ̃)

= μ2(L0, L0
1, ϕ

0) + O
(
(e−κL0 + |L̃| + |ϕ̃|)(|L̃| + |ϕ̃|)

)

= d̃ j (L0, L0
1, ϕ

0)e−2α0(μ1(L0
1,ϕ0))L0 + O

(
e−κL0 e−2α0(μ1(L0

1,ϕ0))L0
)

=
[
d̃ j (L0, L0

1, ϕ
0) + O(e−κL0)

]
︸ ︷︷ ︸

|...|≥η>0

e−2α0(μ1(L0
1,ϕ0))L0

uniformly in L0 � 1. In particular, the set �(L0) does not contain any critical points of
Z(·; L0) and is therefore locally a smooth curve that we can parametrize by its arclength s.

Figure 10 summarizes what we have shown so far. For fixed index j , the quantity μ2 has
a definite sign, and since �0 ∩ �(L0) = ∅, the associated set �(L0) is the disjoint union of
sets that each lie strictly inside one of the bounded rectangles whose boundaries form the set
�0. Pick one of these rectangles inside which Z(·; L0) has the same sign as μ2 and denote it
by Q. The boundary ∂ Q of Q consists of four critical points of Z0 and four curve segments
with finite arclength. Outside each fixed small neighborhood of the critical points, we can
solve Z(L1, ϕ; L0) = 0 by the implicit function theorem for (L1, ϕ) as functions of L0 � 1
and the arclength parameter s along the curve segments in ∂ Q. Furthermore, these functions
satisfy

DL0(L1, ϕ)(s, L0) = O(e−κL0) (3.21)

uniformly in s. Next, we discuss the set �(L0) near each of the four critical points. Pick
one of these four and recall that we have shown above that Z(·; L0) has a unique critical
point nearby. Furthermore, this L0-dependent critical point of Z(·; L0) of saddle type and
nondegenerate. Thus, we can apply the Morse lemma to show that, after a smooth coordinate
transformation of (L1, ϕ) that depends also smoothly on L0, the function Z(·; L0) near the
critical point is given by

Z(x, y; L0) = x2 − y2 − d̃ j (x, y, L0)e
−2α0(x,y)L0 ,

where |α0| ≥ κ > 0, |d̃ j | ≥ η > 0, and their derivatives with respect to (x, y, L0) are
bounded. Here, (x, y) = 0 corresponds to the critical point (L1, ϕ) = (L0

1, ϕ
0) + (L̃, ϕ̃)

constructed above. It is now straightforward to solve Z(x, y; L0) = 0 for (x, y) as func-
tions of L0 and the arclength parameter s, and we again find that the associated functions
(L1, ϕ)(s, L0) satisfy the estimate (3.21). Thus, using uniqueness of solutions, the different
curves we constructed near the curve segments and the critical points fit together to give a
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closed curve that lies inside Q and is close to its boundary ∂ Q. Furthermore, this solution
curve satisfies (3.21).

In summary, we have now solved the Eqs. (3.10)–(3.11), and it remains to solve (3.12)
given by

vc(L1, ϕ, μ) = ϕ1(L0, μ).

Substituting vc from Lemma 3.2 and ϕ1 from (3.5), we obtain the equation

L1 + ϕ + O(e−κL1) = σ
[
φ∗

j (μ) + β0(μ)L0 + a(φ∗
j (μ) + β0(μ)L0, μ) + O(e−κL0)

]
,

(3.22)

where σ = ±1, μ = z(L1 −ϕ)+ O(e−κL1), and (L1, ϕ) = (L1, ϕ)(s, L0) are the functions
constructed above. Recall that (L1, ϕ)(s, L0) stays inside the fixed rectangle Q for all values
of (s, L0). Thus, using (3.21) and the inequality aφ(φ, μ) > −1 that holds for all (φ, μ), we
can solve (3.22) uniquely for L0 = L0(s) for each fixed s. Since (L1, ϕ)(s, L0) is a closed
curve for each fixed L0, the resulting solution (L0, L1, ϕ)(s) gives closed curve as claimed.

Note that the sign of σ has implications for how L0 adjusts with (L1, ϕ) along each 2-pulse
isola. Assume, for instance, that σ = −1. Upon varying s, the curve (L1, ϕ)(s) will pass
near the boundary of the rectangle Q shown in Fig. 10. Pick the segment along which ϕ(s)
is approximately constant, while L1(s) increases, then (3.22) shows that L0(s) will actu-
ally decrease. Thus, for σ = −1, if one of L0 or L1 increases, then the other variable will
decrease, and vice versa. In contrast, if σ = 1, then both L1(s) and L0(s) will increase and
decrease together. We remark that we have σ = −1 near the Turing bifurcations at which the
periodic orbits γ (·, μ) emerge from the origin. The computations for the Swift–Hohenberg
equation (1.1) that we present in the next section indicate that σ = −1 for this equation even
for parameter values further away from the Turing bifurcation.

4 Discussion

4.1 Summary

Motivated by numerical computations for the Swift–Hohenberg equation, we have analysed
the existence of symmetric 2-pulse solutions in homoclinic snaking scenarios. Two-pulse
solutions are characterised by two quantities, namely the transition time 2L0 near the equi-
librium, which measures the separation distance between the two single pulses that form
the 2-pulse, and the transition time 2L1 near the underlying periodic orbit, which corre-
sponds to the width of the single pulses. We showed that the separation distance and the
width of 2-pulses can be parametrized by natural numbers m and n that correspond respec-
tively to the number of oscillations near the equilibrium and to the number of windings
that the 2-pulse makes along the periodic orbit. We proved that symmetric 2-pulses exist
along a two-parameter family of figure-eight shaped isolas that are parametrized by the
integers (m, n). Varying m for fixed n results in a nested family of isolas, while vary-
ing n for fixed m gives a stacked family of isolas. Our proof was based on tracking the
stable and unstable manifolds of the equilibrium along the underlying heteroclinic cy-
cle whose existence we assumed. To track these manifolds, we used a smooth reversible
and symplectic transformation into normal form near the equilibrium and Fenichel coordi-
nates near the periodic orbit. Reversibility then implies that the bifurcation equations for
symmetric 2-homoclinic orbits can be viewed as symmetry-breaking perturbations of the
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bifurcation equations for symmetric 1-homoclinic orbits: the effect of the symmetry-break-
ing terms is that the snakes-and-ladder structure of 1-pulses breaks up into figure-eight
isolas of 2-pulses. This phenomenon is similar to the effect that forced symmetry-break-
ing has on the double helix structure of 1-pulses, which was recently explored numerically
in [5].

4.2 Connection with Poincare maps

A geometric way of viewing symmetric 2-homoclinic orbits consists of inspecting the dynam-
ics of the Poincare map to a fixed two-dimensional transverse section that is placed at the
underlying periodic orbit inside the zero level set of the Hamiltonian. This is illustrated in
Fig. 11, where the location of symmetric and non-symmetric 1-homoclinic orbits is shown
in the left panel, while the location of symmetric 2-homoclinic orbits is indicated in the
right panel. Upon changing the parameter μ, the position of the invariant manifolds will
change, and a careful analysis of the geometry in the cross section yields another explana-
tion of homoclinic snaking; see [2,25]. In particular, the fact that W s(0, μ) and W u(0, μ) are
R-images of each other shows that the non-symmetric orbits emerge in pitchfork bifurcations
very close to fold bifurcations of symmetric orbits. Symmetric 2-homoclinic orbits can be
studied similarly upon making use of the fact that the pull-back Fixpb

0 (R) of the fixed-point
space of the reverser in the transverse section is close to the stable manifold W s(0, μ) as
indicated in the right panel in Fig. 11. Since the pull-back closely follows W s(0, μ), but
is not exactly an R-image of W u(0, μ), symmetric 2-homoclinic solutions will emerge in
fold and not in pitchfork bifurcations, when the curves are moved through each other as the
parameter changes.

4.3 Reversibility and Hamiltonian structure

The key structural assumptions on the underlying vector field that we utilised in our analysis
are its reversibility and the presence of a Hamiltonian. We now discuss briefly what our
expectations are for systems that have only one or none of these structures in place.

First, for generic systems that are neither conservative nor reversible, homoclinic snaking
will likely be a codimension-one phenomenon. Indeed, without either of these two structures,
we could not assume the generic existence of a heteroclinic cycle that consists of an orbit

Fig. 11 The two panels illustrate the dynamics of the Poincare map associated with a fixed two-dimensional
transverse section placed at γ (0, μ) on the periodic orbit. The left panel indicates how symmetric (bullets)
and non-symmetric (circled crosses) 1-homoclinic orbits to u = 0 arise as intersections of W s (0, μ) and
W u(0, μ): note that symmetric 1-pulses lie in Fix1(R). The right panel illustrates the location of symmetric

2-homoclinic orbits based on the observation that the pull-back Fixpb
0 (R) of the fixed-point space of the

reverser is close to W s (0, μ)
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that connects u = 0 at x = −∞ to the roll pattern at x = ∞ and another orbit that connects
the roll pattern at x = −∞ with u = 0 at x = ∞. Codimension-one snaking is discussed
further in [7,17] to which we refer for details.

For systems that are Hamiltonian but not reversible, heteroclinic cycles of the type dis-
cussed above exist robustly. However, the underlying fronts and backs between u = 0 and the
roll pattern may appear and disappear independently of each other. We do not know what the
resulting homoclinic snaking diagrams would look like but believe that our methods should
be applicable to analyse this scenario.

We do not believe that the Hamiltonian structure is essential. It was shown in [2, §6.4] that
asymmetric rung states exist even without a Hamiltonian structure; however, these structures
will no longer be stationary but will instead move with nonzero speed c of order e−ηL1 for
some η > 0 as solutions to the underlying PDE. Combining the ideas in [2, §6.4] with the
analysis presented here, it should be possible to show that stationary symmetric 2-pulses
exist along figure-of-eight isolas in reversible ODEs without a Hamiltonian structure. Note
that symmetric 2-pulses cannot move.

4.4 Hypotheses (H5)–(H6)

We now comment on the role of Hypotheses (H5)–(H6). Snaking was established in [2]
under far weaker assumptions on the geometry of the stable and unstable manifolds near the
periodic orbit than those encoded in (H5)–(H6). In particular, [2, Hypotheses 6–7] covers
the situation where the function μ = z(ϕ) has several nondegenerate maxima and minima.
Furthermore, the modifications outlined in [2, §6.1] allow for isolas of heteroclinic orbits
and therefore apply to the case where the stable manifold W s(0, μ) is not a graph over the
unstable manifold W u(γ, μ) of the periodic orbit.

We believe that our results for symmetric 2-pulses should be valid also in this more gen-
eral setting without major complications in the proof. Indeed, our proof relies only on the
analysis of the zero level set �0 of the function Z0(L1, ϕ) in the (ϕ, L1)-plane plotted in
Figs. 6 and 10 and then utilises the map

(L1, ϕ) �→ (μ∗(L1, ϕ), L1) (4.1)

from (3.13) to generate the complete bifurcation diagram. In particular, symmetric 2-pulses
exist along the zero level set of the function Z(L1, ϕ) which is approximately of the form
Z(L1, ϕ) = Z0(L1, ϕ) ± ηe−2α0 L0 for fixed L0 � 1 and η > 0. Hence, the zero level set
of Z along which 2-pulses exist can be thought of as the level sets of Z0 for values slightly
higher and lower than zero; see Fig. 10 for an illustration. These arguments should remain
valid for more general functions z(ϕ). In Fig. 12, we illustrate the relevant geometry for a
function z(ϕ) with four turning points, which occurs in the planar Swift–Hohenberg equation
[1]. We expect that symmetric 2-pulses exist along the zero level set of Z which resembles
the level sets Z−1

0 (±ε) of Z0 for ε � 1. We refer to Fig. 12iv for an illustration of the
anticipated bifurcation diagram of symmetric 2-pulses in the (ϕ, L1)-plane.

4.5 Stability

Next, we comment on the anticipated stability properties of symmetric 2-pulses for the
Swift–Hohenberg equation. Numerical computations [4] and formal results [2] indicate that
the spectrum of 1-pulses is as shown in Fig. 13. The two eigenvalues that move back and
forth as each snaking curve of symmetric 1-pulses is traversed cause folds and the pitchfork
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Fig. 12 Panels (i) and (ii) show a function μ = z(ϕ) with more than four turning points and the resulting
snaking diagram of symmetric and non-symmetric 1-pulses from [2]. Panel (iii) illustrates the corresponding
zero level set �0 = Z−1

0 (0) of the function Z0(L1, ϕ) whose image under the map (4.1) gives panel (ii). We

believe that symmetric 2-pulses exist along curves that, roughly speaking, are close to the level sets Z−1
0 (±ε)

of Z0, where 0 < ε � 1 depends on L0 as in Sect. 3.3. These are indicated in panel (iv)

Fig. 13 The left panel contains a sketch of the anticipated PDE spectra of symmetric and non-symmetric
1-pulses along part of the double helix. The right panel contains the results of numerical computations of the
Swift–Hohenberg equation (1.1): shown are an isola of symmetric 2-pulses (labelled (s)) and two z-shaped
branches (labelled (n)) of non-symmetric 2-pulses that emerge at pitchfork bifurcations from the symmetric
2-pulse isola

bifurcations to non-symmetric 1-pulses. The results in [22,23] imply that each 1-pulse eigen-
value creates two eigenvalues of the symmetric 2-pulse that we constructed in this paper,
provided m � 1 is sufficiently large; recall that m parametrizes the admissible separation
distances L0 within the 2-pulse. In particular, the translation eigenvalue at zero of the 1-pulse
creates the translation eigenvalue of the symmetric 2-pulse and a second eigenvalue that is
stable for even indices m and unstable for odd m (or vice versa); see [22,23]. These results
together with the form of the isolas of symmetric 2-pulses described here show that symmetric
2-pulses undergo pitchfork bifurcations near each of the folds along the isola on which they
lie. The numerical computations presented in Fig. 13 show that the bifurcating non-symmetric
2-pulses lie on z-shaped branches; we believe that they can be predicted using the approach
established in [2, Fig. 1.7] for non-symmetric 1-pulses.

4.6 Other multi-pulses

The non-symmetric 2-pulses corresponding to the z-shaped branches shown in Fig. 13 con-
sist of two 1-pulses with roughly the same number of interior rolls. It is conceivable that
non-symmetric 2-pulses that consist of two 1-pulses with different numbers of interior rolls
exist also. Indeed, Fig. 14 contains such 2-pulses for (1.1), and we refer to [15] for a more
comprehensive study of such pulses. All non-symmetric 2-pulses that we computed so far
whose underlying 1-pulses have a different number of interior rolls lie on isolas. Using the
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Fig. 14 The left panel contains four isolas of non-symmetric 2-homoclinic orbits of (1.1) together with the
1-pulse double-helix structure plotted in light gray. Representative profiles of solutions along each of the isolas
are plotted in the right four panels

Fig. 15 Panels (i) and (iii) contain solution branches of, respectively, symmetric and non-symmetric 3-pulses
of (1.1). Sample profiles of symmetric and non-symmetric pulses along these branches are shown in panels
(ii) and (iv), respectively

smooth linearization around u = 0 and following the approach we employed in Sect. 3, it
is not difficult to derive the bifurcation equations that describe non-symmetric 2-pulses with
transition times L± near the periodic orbit and separation distance L0 near u = 0. Preliminary
calculations indicate that non-symmetric 2-pulses comprised of 1-pulses with different num-
bers of interior rolls always lie on isolas: Without more detailed knowledge about certain
higher-order terms, however, it seems difficult to predict the actual shape of the isolas, and
we leave this issue for future work. Finally, we expect that N -pulses with N ≥ 3 behave in a
similar fashion. Figure 15 contains computations of symmetric and non-symmetric 3-pulses
of (1.1) that lie again on isolas, and we refer to [15] for additional computations.
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