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• Localised 2D patterns are numerically investigated.
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a b s t r a c t

We investigate stationary, spatially localised crime hotspots on the real line and the plane of an urban
crimemodel of Short et al. [M. Short, M. DÓrsogna, A statistical model of criminal behavior, Mathematical
Models andMethods in Applied Sciences 18 (2008) 1249–1267]. Extending the weakly nonlinear analysis
of Short et al., we show in one-dimension that localised hotspots should bifurcate off the background
spatially homogeneous state at a Turing instability provided the bifurcation is subcritical. Using path-
following techniques, we continue these hotspots and show that the bifurcating pulses can undergo
the process of homoclinic snaking near the singular limit. We analyse the singular limit to explain the
existence of spike solutions and compare the analytical results with the numerical computations. In
two-dimensions, we show that localised radial spots should also bifurcate off the spatially homogeneous
background state. Localised planar hexagon fronts and hexagon patches are found and depending on the
proximity to the singular limit these solutions either undergo homoclinic snaking or act like ‘‘multi-spot’’
solutions. Finally, we discuss applications of these localised patterns in the urban crime context and the
full agent-based model.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The publication of serious crime data (such as time and street
location) for large cities has shown that criminal activity tends
to be spatially localised into regions called crime ‘hotspots’:
regions where high criminal activity is surrounded by low criminal
activity [1,2]. One possible explanation for these hotspots is the
‘near-repeat’ victimisation and broken windows effect where a
region (street/house etc.) has had one criminal event then there
is a high probability of a subsequent criminal event to occur [3,4].
Other possible theories proposed to explain crime hotspots include
the effect of police [5] and global social influence [6].

Based on the broken-window effect and ‘near-repeat’ victimi-
sation theory, Short et al. [4] postulated a stochastic agent-based
model for criminal activity (say burglary) on a square lattice
where the lattice sites are possible locations for criminal attacks
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e.g. houses or neighbourhoods. Simulations of the agent-based
model showed that for certain parameter values crime hotspots
were observed. In order to analyse the model, a mean-field PDE
was derived from the agent-based model in the limit of small time
and space steps. The PDE describes the attractiveness (to burgle)
field A and a density of criminals field ρ. In non-dimensional vari-
ables, the PDE is given by [4]

∂A
∂t

= η2
∇

2A − A + A0
+ ρA, (1.1a)

∂ρ

∂t
= ∇ ·


∇ρ −

2ρ
A

∇A


− ρA + A − A0, (1.1b)

where A0 is the non-dimensional baseline attractiveness value, Ā
is a constant and η describes the rate at which the attractiveness
at one site spreads to near-by sites. From such a model, one now
wishes to find the large-scale distribution of the criminal activity
on a two-dimensional domain and hence predict where crime
hotspots are likely to occur.

In Short et al. [4], they showed numerically that (1.1) possessed
spatially doubly-periodic crime patterns. Crucial to the existence
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of stationary spatially periodic crime hotspots is the presence of a
Turing instability in (1.1) where the spatially homogeneous steady
state becomes unstable to spatially periodic crime hotspots [4].
Short et al. [7] carried out a weakly nonlinear analysis for one-
dimensional and certain two-dimensional (radially symmetric,
square and hexagonal) spatially periodic crime hotspots that
emerge from the Turing instability of the spatially homogeneous
steady state. They also investigated the effect of police suppression
on the hotspots and found that if the hotspots exists in the
subcritical region then police suppression worked while if the
hotspots existed in the supercritical region the police suppression
just displaced the hotspots; see also [8].

Beyond domain covering periodic crime hotspots, the possibil-
ity of other non-trivial solutions to (1.1) may be of interest in the
context of crime hotspots. One particular type of non-trivial solu-
tions that (1.1) may possess are spatially localised solutions1 that
have a sharp spike of high criminal activity surrounded by a re-
gion of quiescence. These solutions may account for unexpected
crime hotspots where there is no nearby elevated criminal activ-
ity above the baseline rate A0 and also crime ‘‘spikes’’ where there
may be sudden jumps in criminal activity. These localised hotspots
are found to only exist in the subcritical region in parameter space
and hence effective police action may help reduce their existence.
It is these localised hotspots that are the study of this paper.

Localised ‘‘spike’’ solutions have been previously found and
analysed by Kolokolnikov et al. [9]. By noting that


ρx − 2 ρ

AAx

x =

(A2(ρ/A2)x)x, they introduced a change of variable v = ρ/A2 and
studied the stationary problem

0 = η2Axx − A + A0
+ vA3, (1.2a)

0 = D(A2vx)x − vA3
+ A − A0, (1.2b)

where D is the diffusion coefficient of the criminal density ρ
(these equations can be derived from (1.1) via the rescaling A →

A/D, v → D2v, Ā → Ā/D, A0
→ A0/D). By looking at the

shadowing limit D ≫ 1 and the singular limit 0 < η ≪ 1, they
derived the asymptotic spike solution

A(x) ∼


2L(Ā − A0)

η


w3
w(x/η) x = O(η),

A0 x ≫ O(η),

v0 ∼
(


w3dx)2

4L2(Ā − A0)2
η2

where w solves wyy − w + w3
= 0 on y ∈ [0, L]. Furthermore,

Kolokolnikov et al. were also able to show the existence of multi-
pulses and analyse their stability.

While the D ≫ 1 limit allows for a detailed analysis of
the existence and stability of spikes, one would like to know if
localised hotspots exist elsewhere in parameter space and also the
conditions for their existence e.g.D = 1. Thiswould be particularly
useful from an application point of viewwhere the diffusion of the
criminals is not very fast. One of the main outcomes of this paper
is that localised hotspots exist in a far larger region of parameter
space than just the D ≫ 1 limit and that the Turing instability
and singular limit (η → 0) of (1.1) have a significant effect on the
behaviour of the localised hotspots.

Near the Turing instability, one can see that localised patterns
should bifurcate off with domain covering periodic patterns
away from the shadowing limit. By looking at time-independent
solutions, the system (1.1) in one-dimension can be transformed

1 Throughout this paper we will use the terms localised states/patterns/
solutions/hotspots interchangeably.
into a fourth-order ODE by solving the first equation for ρ and
substituting this into the second equation. Setting A(x) = B(x)+ Ā,
then yields the following equation

−η2Bxxxx − 2Bxx + 2
B2
x

B + Ā
+ 4η2 BxBxxx

B + Ā
− 6η2 B2

xBxx

(B + Ā)2

−6A0
B2
x

(B + Ā)2
+ 3η2 B2

xx

B + Ā
+ 3A0

Bxx

B + Ā
− ĀB − B2

+ (B + Ā)η2Bxx = 0.

Carrying out a Taylor series expansion about B = 0 and employing
the rescaling

B →
u
η2

, x → xη


2Ā

2Ā − η2Ā2 − 3A0
,

we can re-write the system (1.1) as a single equation (near onset)
of the form

−(1 + ∂2
x )

2u +


4η2Ā3

(2 − η2Ā − 3A0)2
− 1


u

+f (u, ux, uxx, uxxx) = 0,

where the function f = O(u2) contains all the nonlinear terms (see
the appendix (A.2)). Hence near onset, the system (1.1) resembles
the quadratic/cubic Swift–Hohenberg equation [10]. From the
analysis of the Swift–Hohenberg equation, it is clear that the
system undergoes a spatial 1:1 resonance bifurcation of the trivial
state u = 0 at

A0
∗

=
2
3
A −

1
3
η2A

2
−

2
3
Aη

A.

The normal form theory of Woods & Champneys [11] and Burke &
Knobloch [12] can be applied and one can predict the existence of
two homoclinic pulses bifurcating off the background state if the
bifurcation is subcritical. Near the sub/supercritical transition, one
expects homoclinic snaking to exist; see Kozyreff & Chapman [13]
and also [11,14–17]. On the plane, localised spots, rings, hexagon
fronts and patches have been found in the Swift–Hohenberg
equation [18–20].

In this paper, we show that the PDE system (1.1) possesses
stationary, spatially localised hotspots on the real line and the
plane. In one-dimension, these localised hotspots are found to
exist in the subcritical region where a spatially periodic hotspot
is modulated by an envelope that decays to the homogeneous
background state. Using numerical path-following techniques,
we find that these localised hotspots undergo the process of
homoclinic snaking where they develop a wider periodic interior
region that eventually fills the real line via a sequence of
infinitely many folds. This homoclinic snaking creates a region in
parameter spacewhere infinitelymany localised hotspots co-exist.
Interestingly, this homoclinic snaking occurs near the singular
limit of the PDE system η = 0 and hence we analyse both the
Turing and singular limits (away from the large-D analysis of [9])
attempting to follow the localised patterns as we pass between the
two limits. To the best of the authors’ knowledge, this analysis does
not appear to have been done before since the most well studied
models near singular limits (such as the Gray–Scott model and the
Gierer–Meinhardt model) usually do not have a Turing instability.

While the one-dimensional analysis provides some useful
insights into the existence of localised hotspots, urban crime is
crucially a two-dimensional problem. Hence, in two-dimensions
we study the existence of radial spots bifurcating off the spatial
homogeneous stead state at A0

= A0
∗
and carry out numerical

bifurcation analysis of spots and localised hexagon patterns (both
fronts and patches). We find similar behaviour to that observed in
the Swift–Hohenberg equation away from the singular limit [18]
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while close the singular limit the localised hexagon patterns
appear to act like multi-spot solutions much like that seen in
one-dimension. Since Short et al. [7] found stable doubly-periodic
hexagons,we anticipate that localised hexagon structuresmay also
be stable and of relevance in understanding the PDE model.

While the analysis of the localised patterns is carried out on the
real line and plane, we expect these states to persist on large finite-
domains and all computations are done on such finite-domains.
For η away from the singular limit, the effect of finite-domains on
the homoclinic snaking scenario has been extensively studied in a
range of problems andwe expect a similar process to happen here;
see for instance [21,22]. Far away and near the singular limit, we
anticipate that multiple and appropriately separated copies of the
localised hotspots found in this paper can exist and hence be of
relevance to understanding crime hotspots.

The paper is outlined as follows. In Section 2, we extend the
weakly nonlinear analysis of Short et al. [7] in one-dimension and
show that there should be localised hotspots bifurcating off the
spatially homogeneous steady state. We then employ numerical
continuation to path-follow the localised hotspots and show that
they undergo homoclinic snaking in Section 3. We analyse the
singular limit in Section 4 and two-dimensional localised patterns
(spots and localised hexagons) in Section 5. Finally in Section 6 we
draw conclusions and relate the results back to the urban crime
context.

2. Weakly nonlinear analysis in 1D

In this sectionwe extend theweakly nonlinear analysis of Short
et al. [7] to predict the existence of localised pulses; see also [23]
for a similar weakly nonlinear analysis for the Swift–Hohenberg
equation. We start by noting that the Eqs. (1.1) have the spatially
homogeneous equilibrium state

A(x, t) = A, (2.1)

ρ(x, t) = 1 −
A0

A
. (2.2)

This state is stable provided A0 > A0
∗
where

A0
∗

=
2
3
A −

1
3
η2A

2
−

2
3
Aη

A. (2.3)

At A0
= A0

∗
there is a Turing instability with the critical wave

number given by

k2
∗

=


A
η2

. (2.4)

We carry out a weakly nonlinear analysis by setting

A0
= A0

∗
− ϵA, (2.5)

and we define a slow time variable T = |ϵ|t . After rescaling x̃ =

|k∗|x and dropping reference to tildes, Eqs. (1.1) become

|ϵ|
∂A
∂T

= η2
|k∗|

2Axx − A + A0
∗
− sign(ϵ)η2

|k∗|
4
|ϵ| + ρA (2.6)

|ϵ|
∂ρ

∂T
= |k∗|

2


ρx −
2ρ
A

Ax


x
− ρA

+ η2
|k∗|

4
− A0

∗
+ sign(ϵ)η2

|k∗|
4
|ϵ|. (2.7)

We introduce a new slowly varying variable X = |ϵ|1/2x and
expand A and ρ about the spatially homogeneous state

A(x, X, T ) = A +

∞
j=1

|ϵ|
j
2 A(j)(x, X, T ), (2.8)

ρ(x, X, T ) = 1 −
A0

∗

A
+

∞
j=1

|ϵ|
j
2 ρ(j)(x, X, T ). (2.9)
Substituting the previous expressions into Eqs. (2.6) and (2.7),
equating coefficients of powers of |ϵ|, Eq. (2.6) yields an expression
for ρ(j)(x, X, T ) in terms of ρ(j′)(x, X, T ), A(j)(x, X, T ) and their
derivatives, where j′ represents all the terms less than j. By
substituting this value for ρ(j)(x, X, T ) into Eq. (2.7) and repeating
this process generates a series of differential equations of the form,

(∇2
+ 1)2A(j)(x, X, T ) = fj


A(j′)(x, X, T )


(2.10)

which can be solved for A(j)(x, X, T ).
At order |ϵ|

1
2 , we have the first equation to solve for

(∇2
+ 1)2A(1)(x, X, T ) = 0,

from which we find that

A(1)(x, X, T ) = P(X, T )eix + c.c.,

where P(X, T ) is the slowly varying amplitude and c.c denotes
complex conjugation.

At order |ϵ|, we find that

A(2)(x, X, T ) =
4(1 − η4k4

∗
)

9η4k6
∗


P2(X, T )e2ix + c.c.


.

At order |ϵ|
3
2 one has to solve

(∇2
+ 1)2A(3)

= f3,1[P(T , X); η, k∗]eix + f3.2[P(T , X); η, k∗]e2ix

+ f3,3[P(T , X); η, k∗]e3ix + c.c, (2.11)

where f3,1, f3,2 and f3,3 are functions, that are not stated for
simplicity.Making the secular term f3,1 zero (the other secular term
e2ix yields an ordinary differential equation for A(2) which is higher
order), yields the amplitude equation

PT = σ∗P − C1(η, k∗)|P|
2P +

4
3
σ∗η

2k2
∗
PXX , (2.12)

where

C1(η, k∗) =
−8 + 56η2k2

∗
− 31η4k4

∗
− 8η6k6

∗

3η4k8
∗
[2η2 + η2k2

∗
(3 − η2)]

(2.13)

and σ∗ is given by the growth rate for the k∗ mode, given by
σ(k∗) = σ∗ϵ + O(ϵ2), where

σ∗ =
9η2

|k∗|
2

(1 + η2|k∗|
2)[2η2 + η2|k∗|

2(3 − η2)]
. (2.14)

By re-scaling Eq. (2.12), T → |ϵ|t , X → |ϵ|1/2x and defining
Q (t, x) = |ϵ|

1
2 P(T , X), the amplitude equation can be written as a

Ginzburg–Landau equation

Qt = σ∗ϵQ − C1(η, k∗)|Q |
2Q +

4
3
σ∗η

2k2
∗
Qxx. (2.15)

This equation is known to have stationary real pulse solutions of
the form

Q =


2σ∗ϵ

C1

 1
2

sech


−

3ϵ
4η2k2

∗

 1
2

x


(2.16)

provided both ϵ and C1 are negative i.e. the Turing bifurcation is
subcritical (this occurs if η2k2

∗
. 0.157) and where σ∗ is defined

in (2.14); see Short et al. [7].
If C1 < 0 and close to zero, then the analysis can be taken

further to yield an amplitude equation of the form (see for example
for the Swift–Hohenberg equation Budd & Kuske [23])

Qt = σ∗ϵQ − C1(η, k∗)|Q |
2Q − C2(η, k∗)|Q |

4Q +
4
3
σ∗η

2k2
∗
Qxx.
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Fig. 1. (a) Homoclinic snaking diagram of the 1D PDE system with η2
= 0.015, A = 1A0

= A0
∗

− ϵA with panels (b) and (c) showing the localised pulses in A(x), ρ(x).
Two parameter diagrams of the primary fold of the localised patterns are shown in panel (d) with η2

= 0.015, and (e) with A = 1. In panel (e) we also plot the dashed line
ϵ = −4η/3 denoting the transition where decay to the spatially homogeneous state changes from oscillatory to monotonic decay. The grey regions denote parameter areas
where we have been unable to numerically confirm if snaking exists.
This systempossesses hysteresis of the pattern state bifurcating off
the homogeneous state and a Maxwell point (where a heteroclinic
orbit exists) suggesting the existence of homoclinic snaking of the
pulse solutions; see Woods & Champneys [11]. We also expect the
exponential asymptotics of Kozyreff & Chapman [13] to be valid
in this parameter region and expect homoclinic snaking to occur.
In Section 3 we will continue the bifurcating pulses and show that
homoclinic snaking does exist in this system.

3. Homoclinic snaking of pulses

In order to find outwhat happens to the localised pulses thatwe
found in the previous section, we employ parameter continuation
to path-follow the pulses as we vary parameters. To this end, we
solve the time-independent system (1.1) using auto07p [24] with
NTST = 200, spatial truncation = 1000 on the half-line with
Neumann boundary conditions. As in [7], we plot just the L2-norm
of the attractiveness field

∥A∥
2
2 =


Ω

(A − Ā)2dx.

In all the numerics presented in this paper, we set A0 as in (2.5) and
continue in ϵ.
In Fig. 1, we path-follow one of the localised pulses with η2
=

0.015, Ā = 1 that has bifurcated from the Turing bifurcation and
find that we undergo the process of homoclinic snaking where
one passes through an infinite sequence of folds where an interior
periodic region is grown; see [25] for a description of homoclinic
snaking in the Swift–Hohenberg equation. We find that both A(x)
and ρ(x) are localised and decay to the spatially homogeneous
background state (A, ρ) = (A, 1−A0/A). We note that the periodic
interior of the localised pulses is not strictly sinusoidal like that
observed in the Swift–Hohenberg equation [25,26] and we find at
the minimum of the pulses the solution rises up a small amount
before dropping again and then spiking; see Fig. 1(b) and (c). This
‘‘bump’’ in the pulse near the minimum can be more clearly seen
if one decreases η as shown in Fig. 2. In Fig. 2, we see that the
pulse in the A variable starts at the spatially homogeneous value
A, decreases to a minimum value that is approximately A = A0

before going on a large spike where it returns to the minimum
value A ∼ A0 and the little bump rises back towards A before
decreasing again and another spike occurs.

Fig. 2 also shows how the width of the pulses are grown as one
proceeds around the bifurcation diagram. Starting at the right fold,
two new spikes are grown at either ends of the interior region as
one transverses the snake to the left. Once the left fold is reached,
the solution remains almost the same until one reaches a right fold
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Fig. 2. Bifurcation diagramwith η2
= 0.005. As one goes from right to left on the bifurcation diagram, spikes are grown.We note that the spatial eigenvalues of the spatially

homogeneous state remain complex throughout the snaking region.
again. At the left fold the decay to the spatially homogeneous state
appears to bemonotonic unlike at the right fold. For the parameter
values in Fig. 2, we find the background state has oscillatory decay
until ϵ ∼ −0.094 and so for the entire snaking region in Fig. 2 the
decay to the spatially homogeneous state is oscillatory.

In general, the spatial eigenvalues of the background state for
A = 1, are given by

λ1,2 = ±

√
2

2η


−3ϵ − 2η +


9ϵ2 + 12ηϵ,

λ3,4 = ±
1
2η


−6ϵ − 4η − 2


9ϵ2 + 12ηϵ.

From these eigenvalues, we see that there are three possibilities

• ϵ < −4η/3, the eigenvalues are all real,
• −4η/3 < ϵ < 0, the eigenvalues are all complex,
• ϵ > 0, the eigenvalues are all imaginary.

In Fig. 1(e), we plot the (dashed) line ϵ = −4η/3 separating the
region where the decay to the background state changes from os-
cillatory to monotonic decay. It appears there does exist a region
in parameter space (for η2 < 0.003) where the type of decay to
the homogeneous state changes within the snaking region. While
this change in the type of decay should have little effect on the
homoclinic snaking it could have a significant impact on multi-
pulses (states that are form of two or more weakly interacting lo-
calised patterns that include a periodic interior) as decay to the
background state has a significant effect on the existence regions
of multi-pulses away from the singular limit η → 0; see [27,28]. In
Fig. 1(d) and (e), we plot the continuation of a left and right fold of
the snaking region in two parameters. We find that as we decrease
either A or η, the width of the snaking region increases. Of partic-
ular interest is the fact that the snaking region seems to coincide
with the singular limitη = 0 of the system. Forη2 < 0.005, the nu-
merics become very stiff due to the large gradients in the solution
but we do see a primary fold of the pulse solutions but the upper
branch terminates at ϵ ∼ 0 where the numerics fail to converge.

We now preempt some of the singular limit analysis carried
out in Section 4 by looking at what happens to the localised so-
lutions starting from the snaking region as we decrease η. From
the singular limit analysis in Section 4, we find that it is useful
to plot the solutions in (A, B, v, w)-variables where B = Ay, v =

ρ/A2, w = A2vy and x = ηy. In Fig. 3, we show two solutions for
different values of η. We see in Fig. 3(a) and (b), that as η is de-
creased the distance between the spikes increases, the maximum
of the ‘‘bumps’’ between the spikes approach the spatially homoge-
neous background state and the solutions approach what appears
to be a multi-pulse state. It is not expected that such multi-pulse
solutions undergo homoclinic snaking [29] and hence we believe
that snaking ceases as one approaches the singular limit.

Fig. 3(d) also shows how the localised solutions scale as η is
decreased. We see that the height of the spikes scale like ∼1/η,
while the value of v during the spikes scales like∼η2 and the jump
inw converges to a constant that is∼0.6.Wewill use these scalings
in the singular limit analysis in Section 4.

In the next section, we investigate the singular limit to explain
the structure of the solutions found near η = 0.

4. Singular limit analysis

In this section, we investigate the singular limit η = 0 and
attempt to explain some of the properties of the pulses observed in
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a b

c d

Fig. 3. Localised solutions in (A, v, w)-variables for the parameters Ā = 1, ϵ = −0.018 (a) η = 0.054, (b) η = 0.023, and (c) Zoom-in of the box in panel (b). From
this it is clear that v is a constant during the fast phase while w is clearly varying rapidly. (d) Log–log plot of the scalings of the max of A, B and w and min of v. We find
max(A),max(B) scale ∼1/η while min(v) scales ∼η2 and max(w) is independent of η.
the previous section that are not captured by the large-D analysis
of [9]. We employ the change of variables v = ρ/A2, and re-
write (1.2) as a first order ODE system to yield

ηAx = B, (4.1a)

ηBx = A − vA3
− A0, (4.1b)

vx =
w

A2
, (4.1c)

wx = vA3
− Ā + A0, (4.1d)

where

A0
=


2
3

− ϵ


Ā −

1
3
η2Ā2

−
2
3
ηĀ

Ā, (4.2)

sincewewish to investigate the interaction of the Turing instability
with ϵ < 0 in the region where the spatially homogeneous state is
temporally stable. We call (4.1) the slow system.

We re-scale space via x = ηy to yield the fast system

Ay = B, (4.3a)

By = A − vA3
− A0, (4.3b)

vy = η
w

A2
, (4.3c)

wy = η

vA3

− Ā + A0 . (4.3d)
In these coordinates, we have the spatially homogeneous
equilibrium given by

A = A, B = 0,

v = v =
Ā − A0

Ā3
=

 1
3 + ϵ


+

1
3η

2Ā +
2
3η

√

Ā

Ā2
, w = 0.

We note that both the fast and slow systems possess the
symmetry

x → −x, y → −y, A → A,

B → −B, v → v, w → −w.
(4.4)

We wish to find homoclinic orbits with this symmetry that
correspond to the spike solutions in Fig. 3 (the individual spike
solutions possess this symmetry).

We will first look at the slow and fast limits at η = 0 and then
carry out the matching.

4.1. Slow system analysis

Setting η = 0 in (4.1), the reduced slow subsystem is defined
only on the invariant plane

M0 =

v, w, B = 0, A − vA3

− A0
= 0


,
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a b

Fig. 4. (a) Phase space of the slow system with Ā = 1, A0
= (2/3 − ϵ) and (b) plot of the numerical solution w(x) for η = 0.023 against the analytical solution (4.7) with

Θ = −3ϵ using the numerical A(x) field.
and is given by

vx =
w

A2
,

wx = vA3
− Ā + A0.

Firstly, we note that the cubic polynomial in A can be re-written
to find

v =
A − A0

A3
(4.5)

and hence for v > 0 (and the solutions to remain well posed) we
require that A > A0

= (2/3 − ϵ)Ā.
Using (4.5), we re-write the slow subsystem in terms of A and

w to yield

Ax =
A2w

(3A0 − 2A)
, (4.6a)

wx = A − Ā. (4.6b)
This system has a saddle equilibrium at E : (A, w) = (Ā, 0). There
is a singularity in the vector field at A = 3A0/2 but since ϵ < 0 this
is away from the region of interest. The phase portrait of the slow
subsystem is shown in Fig. 4(a).

From the phase portrait shown in Fig. 4(a), we solve the system
where A is a graph of w i.e., A = f (w), yielding the single ODE
df
dw

=
f 2w

(3A0 − 2f )(f − Ā)
,

which can be integrated to yield

− 2A + 3 ln(A)A0
+ 2 ln(A)Ā + 3

A0Ā
A

=
1
2
w2

+ Θ, (4.7)

where Θ is an integration constant to be determined by the initial
conditions.

We can find the (un)stable manifolds of the steady state by
setting (A, w) = (Ā, 0) in (4.7) to find Θ

Θ = 3A0
− 2Ā + ln(Ā)(3A0

+ 2Ā). (4.8)
In the special case when Ā = 1, we find Θ = −3ϵ. Therefore,
we define the stable and unstable manifolds of the equilibrium E
restricted to M as
WU,S(E)|M : w

= ±


2


−2A + 3 ln(A)A0 + 2 ln(A)Ā + 3
A0Ā
A

− Θ


=:


f (A), (4.9)

where Θ is defined in (4.8).
In Fig. 4(b), we compare the analytical solution (4.7) (with Ā =

1, Θ = −3ϵ) with the numerical solution during the ‘‘periodic’’
interior of the localised pulse for η = 0.023 and find an excellent
agreement. As η is decreased, the numerical solution appears to
converge to the analytical solution Θ = −3ϵ that connects the
spatially homogeneous state.

In Fig. 4(a), we also plot the take-off and touch-down curves
where trajectories leave and enter the slowmanifold (these curves
are calculated in Section 4.3) Eqs. (4.20). We see that the take-off
and touch-down curves asymptote at A = A0 and we expect the
take-off and touch-down points to occur at A ∼ A0 i.e., v ∼ 0. We
will use this fact in the analysis of the fast system.

4.2. Fast system analysis

The fast subsystem (4.3) for η = 0 is given by

v(y) = v0, w(y) = w0, Ayy = A − vA3
− A0. (4.10)

This system has a homoclinic orbit to A ∼ A∗ where A∗ solves the
cubic polynomial A∗

− v0(A∗)3 − A0
= 0, and

A∗
= −

1
12

α1/3

v0
−

1
α1/3

−
i
√
3

2


α1/3

6v0
−

2
α1/3

1/3

(4.11)

where

α =

−108A0
+ 12


3(27(A0)2v0 − 4)

v0

 v2
0 .

The right-hand side of (4.11) is real-valued provided that v0 ≤ v̄.
The existence of a homoclinic to A∗ in the fast sub-system explains
the spiking in the interior of the localised pulses in the A variable
shown in Section 3. We note that the fast system (4.3) for η = 0,
possesses a Hamiltonian

H(A, B; v) =
B2

2
−

A2

2
+

vA4

4
+ A0A,

and we can calculate the splitting distance between the manifolds
W S(M) and WU(M) via the Melnikov integral

∆H(v0, w0; A0, Ā) =


∞

−∞

Ḣ(A(y), B(y), v(y), w(y))dy

=
η

4


∞

−∞

w(y)A(y)2dy. (4.12)

Hence, for the splitting distance to be zero we require that A is
an even function and w is an odd function i.e. w0 = 0. Since we
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requirew0 = 0, in order to be able to match the fast manifold with
the slowmanifold we require that A∗

≈ Ā (so that w remains close
to zero from the slow manifold) and hence v0 ≈ v for 0 < η ≪ 1.
In particular, we expect v0 to beO(η) less than v̄. This situation ap-
pears to be almost exactly the same geometrically to that studied
for theGray–Scottmodel [30] andwewill shownumerically in Sec-
tion 4.3 that these pulses exist. Unfortunately, there is no explicit
form for the homoclinic orbit of (4.10) making a more detailed
analysis difficult and so we do not attempt to carry it out here.

From Fig. 3, we see that there also exists solutions where v is
very small (∼η2) during the fast phase while there is a sharp O(1)
jump inw frompositive to negative values. Initially, itmay look like
one cannot match the fast and slow manifolds for these solutions
but due to the v term being small during the fast-phase (resulting
in a large spike), it turns out that w becomes order one.

We start by find an expansion that is consistent with the
numerics of the fast subsystem (4.10) to leading order for small
v0 by first shifting A as follows

A(y) = A∗
+ C(y),

and rescaling C = C̃/
√

v0 to yield

C̃yy = C̃ − C̃3
+ O(

√
v0). (4.13)

Assuming v0 ≪ 1, we find to leading order

C̃ =
√
2 sech(y).

Next we find the influence of this leading order fast phase solution
on the slow variables v and w by calculating

∆v(y) = η

 y∗

−y∗
vydy

= η

 y∗

−y∗

 √
v0w

(C̃ +
√

v0A∗)2


dy + h.o.t, (4.14a)

∆w(y) = η

 y∗

−y∗
wydy

= η

 y∗

−y∗


C̃3

√
v0

+ C̃2A∗
− Ā + A0


dy + h.o.t, (4.14b)

where 1 ≪ y∗
≪ O(1/η) is the matching point (we will discuss

below why we cannot take y = O(1/η)). Since we are looking for
solutions that are odd in w and even in C̃ , we find that ∆v is zero
to leading order. For there to be an O(1) change in w during the
fast phase as η → 0, we require that v0 ∼ η2. This matches with
the numerical scalings found in Section 3. We proceed by setting
v0 = η2ṽ0 and find the leading order influence on ∆w to be for
large y∗

∆w ≈


∞

−∞


2
√
2 sech3(y)
√

ṽ0


dy = π


2
ṽ0

. (4.15)

Assuming v(y) = η2ṽ0, we can integrate the equation for w to
find a leading order approximate solution for the fast phase given
by

A(y) = A∗
+

1
η


2
ṽ0

sech(y), (4.16a)

w(y) =


2
ṽ0


sinh(y)
cosh(y)2

+ 2atan(ey) −
1
2
π


− η(Ā − A0)y + A∗η tanh(y). (4.16b)

In Fig. 5, we plot the numerics of the same pulses but in this
new re-scaled system and observe that the quantities max A, B, w
Fig. 5. Comparison with fast system numerics (solid lines) and the analytical solu-
tion (4.16) for A and w with parameters ϵ = −0.018, η = 0.028. The dashed lines
are the singular limit solution (4.16). The value of v0 is taken to be the minimum
value of v of a computed solution at y = 0.

and min v do not change as η is decreased. We also overlay
the analytical solutions of the fast system by taking v0 from a
numerical solution at the origin and find a reasonablematch during
the fast excursion for small y.

Let us discuss the validity of the jump calculations and the
expansion (4.16). Kolokolnikov et al. [9] showed that in the D ≫ 1
limit one needs to carry out a two-term expansion for the fast
phase if v ∼ O(η2). In our case, such an expansion yields

v ∼ η2ṽ0 + η3


π

√
ṽ0e2y

32
+ ṽ1


,

for large y, where ṽ0 and ṽ1 are constants to be found from
the matching. Due to the exponentially growing term, such an
expansion is valid only until y ∼ O(log(1/

√
η)). Furthermore,

carrying out the two term expansion as in [9] yields A → −∞

as y → ∞ suggesting a more sophisticated analysis is required for
the fast-phase. However, the jump in w will be governed by the
leading order term provided we do not take y∗ too large and it is
this variable that we will attempt to match with the slow-phase.

4.3. Matching

In this section, we formally match the fast and slow manifolds
and construct a single pulse to the equilibrium E by finding v0. We
first show that the slowmanifold is normally hyperbolic and hence
standard matched asymptotics is applicable in this situation.

The condition for the slow manifold to be normally hyperbolic
comes from the linearisation of the fast systemwith respect toA, B-
variables given by ẋ = J(A, B)x, where

J(A, B) =


0 1

1 − 3vA2 0


,

and x = [A, B]T . The slow manifold will be normally hyperbolic if
J is hyperbolic i.e.

A <
1

√
3v

.

Substituting (4.5) into this condition, we find that the slow mani-
fold is normally hyperbolic if

A <
3
2
A0

=
3
2


2
3

− ϵ


Ā.
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Fig. 6. Plot of the cubic polynomial A − vA3
−
 2
3 − ϵ


= 0 and the region where

the invariant plane M0 is normally hyperbolic.

Since, we are in the subcritical region (i.e., ϵ < 0), the hyperbolic
part of the slow manifold also contains the homogeneous equilib-
rium (A, B, v, w) = (Ā, 0, v̄, 0).

In Fig. 6, we plot the cubic polynomial and show where the
region where the plane M0 is normally hyperbolic. We note that
we wish to match in the region where v ≤ v (since from the slow
manifold analysis v is decreasing from v̄) and hence the region
of the slow manifold we are interested in is normally hyperbolic
provided ϵ < 0 on the compactified manifold with 0 ≤ v ≤ v̄ + ϵ.
Fenichel’s theory [31] implies that there exists an slow manifold
M, for 0 < η ≪ 1, that remains invariant under the flow of the
full system and is O(η)-close to M0.

We first recall from Section 4.2 that a possible matching is

v0 ≈ v̄ =
Ā − A0

Ā3
. (4.17)

Looking at the relation (4.2) for A0, we find that v0 → 0 as ϵ →

−1/3.When this occurs, we expect that another localised state can
be constructed.

Wewill now show formally that another localised state to Ā can
be constructed for v0 ≪ 1. We first note that the homoclinic orbit
for A converges to the equilibrium A∗ (4.11) which for small v0 has
the following expansion

A∗
= A0

+ (A0)3v0 + O(v2
0). (4.18)

This is a point on the slowmanifoldM0 defined by the relation (4.5)

v =
A∗

− A0

(A∗)3
= v0 + O(v2

0). (4.19)

Hence, the slow v-variable matches with the fast v0-variable to
leading order.

We now consider a trajectory starting in the fast field with
initial conditions

(A(0), B(0), v(0), w(0)) = (A(y = 0; v), 0, η2v0, 0),

and we evolve the fast system until y = y∗
∼ O(log(1/

√
η)) ≫ 1.

To leading orderA(y∗) = A∗
≈ A0. At this point there is a jumponto

the slow manifold with values (v+

0 , w+

0 ). Hence, we may define
the touch-down curve Td (and similarly in backwards time a take-
off curve To) where solutions land on the slow manifold to be to
leading order

Td : w = +
1
2
∆w = +

π

2


2v0

, (4.20a)

To : w = −
1
2
∆w = −

π

2


2v0

, (4.20b)
where we have used ∆w defined in Eq. (4.15). We note that the
matching point on the slow manifold (v+

0 ) is found from (4.19) to
be v+

0 = η2ṽ0 and since we have imposed the condition w(0) = 0,
we require the value ofw at thematching point from the slow field
(w+

0 ) is given, to leading order, by

w+

0 =


2

−2A0 + 3 ln(A0)A0 + 2 ln(A0)Ā + 3Ā − Θ


=


f (A0),

as we wish to match with the stable manifold of the spatially
homogeneous equilibrium on the slow manifold (4.9). Hence, we
find to leading order

v0 =
π2

2f (A0)
, (4.21)

where Θ is the arbitrary constant in (4.7). Since we have taken
the initial conditions of our trajectory to be B(0) = 0, w(0) = 0,
then using the symmetry (4.4)we can construct a similar trajectory
evolving backwards in time and construct a unique localised ho-
moclinic pulse to (A, B, w, v) = (Ā, 0, v̄, 0) provided that A0 > A0

∗
.

In Fig. 7(a), we draw a schematic sketch of the phase space with
the take-off and touch-down curves in the slow field. Graphically,
we find the intersection of the stable and unstable manifolds of
E with the take-off and touch-down curves to be at A ∼ A0.
We also plot the comparison of the asymptotic ṽ+

0 value (4.21)
with the numerically calculated ṽ0 = min(v)/η2 in Fig. 7(b) for
η2

= 1 × 10−7, Ā = 1 with A0 set as in (2.5). We see that the nu-
merically calculated value of ṽ0 starts ∼50 and increases until is
undergoes a fold around ϵ = −0.32 by which point ṽ0 is no longer
O(η2). For small values of ṽ0, we find the approximation (4.21) to
be excellent while for large values of ṽ0 the approximation (4.17)
fits well. The upper part of the branch in Fig. 7(b) is the branch that
initially bifurcates off the spatially homogeneous steady state at
the Turing bifurcation point ϵ = 0. Looking at the intersection of
the two approximations for ṽ0 (4.21) and (4.17) we find that the
predicted fold should occur at (ϵ, ṽ0) = (−0.3248, 64139) that is
of the same order of magnitude as the numerically calculated fold
at (ϵ, ṽ0) = (−0.3178, 40530).

Formally, we can construct multi-pulse solutions by ‘glueing’
several of the single localised pulses together provided they are
well separated. It is these solutions (involving the large spike) that
numericallywe seem to be converging to as η → 0 as seen in Fig. 3.
It is not clear from the analysis or thenumericswhether homoclinic
snaking in the singular limit can be ruled out and we leave this as
an open problem.

We note that there are several problems with this matching.
Firstly, we do not have a good uniform expansion for the fast phase
(in particular for the v variable) as discussed in Section 4.2. Further-
more, it is not clear that when η > 0, the O(η)-perturbation to the
slowmanifold M0 will mean that v can no longer bematched with
the fast phase due to v0 ∼ O(η2). This appears to be a compli-
cated problem where more sophisticated methods are required;
see Kolokolnikov et al. [9, Section 5] and references therein. Sec-
ondly, we have a gap in the matching as the fast system analysis
suggests we can only match at y = y∗

∼ O(log(1/
√

η)). We be-
lieve that a more delicate analysis is required in order to resolve
both these issues.

5. Two-dimensional localised patterns

In this section we investigate localised spots and hexagon
patterns near the Turing instability and the singular limit (η →

0) using our knowledge from the one-dimensional calculations
in the previous sections. We start by looking at bifurcating spots
from the Turing instability where the bifurcation theory of Lloyd
& Sandstede [19] and McCalla [32] applies. Using numerical
continuation, we trace out the bifurcation diagram for the spots.
In Sections 5.2 and 5.3, we investigate numerically the bifurcation
structure of the localised hexagon states.
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a b

Fig. 7. (a) Schematic sketch of the phase space of the system. (b) Comparison of the numerically computed min(v)/η2 (solid blue) with the analytical estimates forv0
(dashed lines) for η2

= 1 × 10−7, Ā = 1 with A0 set as in (2.5).
5.1. Spots

Near a Turing instability in general Reaction–Diffusion systems,
three types of stationary, radially symmetric localised solutions
have been proven to exist: a localised ring decaying to almost zero
at the core r = 0, a spot with a maximum (called Spot A) at r = 0
and a spot with a minimum at r = 0 (called Spot B); see Lloyd
& Sandstede [19] and McCalla and Sandstede [20,32]. In Fig. 8, we
plot a Spot A, and in Fig. 8(d)we plot a Spot B and Fig. 8(e), we plot a
ring. The existence of these radial solutions near a Turing instability
relies on carrying out a radial centre-manifold of Scheel [33] to
yield a quadratic/cubic Swift–Hohenberg equation on the centre-
manifold. Provided the quadratic term in the Swift–Hohenberg
equation is non-zero i.e., up–down symmetry is broken at onset,
the existence of Spot A can be rigorously established.

We only establish the existence of a stationary Spot A near
a Turing instability for Eq. (1.1) in Theorem 1 as these localised
patterns are themost interesting from an application point of view
since we find that these small amplitude spots undergo a fold as
ϵ is decreased and become finite amplitude crime hotspots; the
proof is an adaptation of Theorem 2 in [19] and establishes the
non-degeneracy condition for a Spot A to bifurcate from the spatial
homogeneous steady state, see the Appendix for details.

Theorem 1. Fix Ā, η > 0, then provided

θ =
α4

η4

4
√
3

−
2

√
3

α2

η4


3A0

∗

Ā2
− η2


−

8
Āη2


−

2
√
3

−
10π
3

−
√
3


+
1

Āη2


8π
3

+
√
3


+ 2
α2

η4Ā


6A0

∗

Ā
− 1


2

√
3

+
α

η4Ā
(3A0

∗
− 10η2)


2

√
3

− 2π I1


−

6
η2Ā


4

√
3

+
4π
3

+
√
3


−
α2

η2


2π
3

−
4

√
3


≠ 0,

where α =


η/

√

A and I1 =


∞

0 J0(r)J1(r)2dr ∼ 0.186, then for
some ϵ∗ > 0withA0

= A0
∗
+ϵ for ϵ ∈ (0, ϵ∗), there exists a stationary

localised spot that bifurcates from the spatially homogeneous state
(A, ρ) = (Ā, ρ̄) of (1.1) and for each fixed r∗ > 0, we have the
asymptotics A = Ā + β

√
ϵJ0(r) + O(ϵ) uniformly in 0 ≤ r ≤ r∗

for an appropriate constant β = O(1) and sign(β) = −sign(θ).
We find numerically, that for almost all parameter values,
one can expect localised spots to bifurcate off the spatially
homogeneous state at the Turing instability A0

= A0
∗
. In particular,

for η ≪ 1 the leading order term in θ is given by

θ ∼ 3
A0

∗
α

Āη4


2

√
3

− 2π I1


< 0. (5.1)

Spot B and localised rings are also expected to bifurcate off
the spatially homogeneous state (A, ρ) = (Ā, ρ̄) provided that
the coefficient C1(η, k∗) < 0 from Section 2 i.e., the 1D Turing
bifurcation is subcritical; see [32].

The singular perturbation analysis carried out in Section 4 can
be adapted to the radial casewherewe find a pulse in the A variable
similar to that in [9]. However, the slow system does not appear
to have an explicit analytical solution and so the locations of the
stable and unstable manifolds are not known making matching
difficult. However, we are able to make some observations. Firstly,
the leading order fast system where r = ηs for η = 0 is given by

v(s) = v0, w(s) = w0, Ass +
1
s
As = A − vA3

− A0. (5.2)

Similar to the discussion in Section 4.2, seeking solutions that are
odd in w yields that

w0 ≈ 0, v0 ≈ v̄ =
Ā − A0

Ā3
, (5.3)

to leading order. We expect solutions of (5.2) to be a good
description of the radial spot branch until v̄ = 0 (i.e., when ϵ ≈

1/3) at which point we expect a fold. For v0 ≪ 1, a far more
delicate analysis is required in order to predict the spots and we
do not do this here.

We now numerically solve the stationary system (1.1) in radial
coordinates in AUTO07p [24] with NTST = 1000, and a domain
truncation of 1000 on the half line with Neumann boundary
conditions. In Fig. 8, we show the bifurcation diagrams for the
radial spot A as we path-follow the spot bifurcating from the
Turing instability. Here we see that the radial spot exists over
a significantly larger region in parameter space than the one-
dimensional pulse as already noted by Short et al. [7]; compare
with Fig. 1(a). As one moves away from the Turing instability, the
decay to spatially homogeneous state changes from oscillatory to
monotonic and the spot resembles the spike solution found by
Kolokolnikov et al. [9, Section 5]. We note that the fold of the spots
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Fig. 8. (a) Radial localised spot bifurcation diagram for η2
= 0.015, Ā = 1, (b) and (c) two parameter continuation of the primary spot fold. In panel (d) we plot a Spot B

and panel (e) a ring solution for η2
= 0.0005, Ā = 1, ϵ = −0.0001.
in Fig. 8 converges to ϵ = −1/3 as η → 0 as predicted by the
singular limit analysis. These spots are related to those found by
Short et al. [7,8] except the spotswe find are on the plane and decay
exponentially while those found by Short only exist on discs of
radius Rwhere J0(R) = 0 and have O(1/

√
R) decay to the spatially

homogeneous state. Unlike in one-dimension, we do not observe
any homoclinic snaking and numerics fail as the spot on the upper
branch in Fig. 8(a) approaches the Turing point ϵ = 0. In Fig. 8(d)
and (e), we also plot a localised ring and Spot B. These states are
found by using Matlab’s fsolve Globalised Newton solver and
providing an initial guess that is either a ring or spot B; see [18].We
do not observe the growth and interchange with the ring or Spot
B solution found for the Swift–Hohenberg equation by McCalla &
Sandstede [20].

5.2. Hexagon fronts

We employ the numerical methods described in Avitabile
et al. [34], where we use a Fourier pseudo-spectral method in
the periodic y direction (for ⟨10⟩ fronts y ∈ [0, 2πk∗

crit/
√
3] and

for ⟨11⟩ fronts y ∈ [0, 2πk∗

crit ]) and use AUTO07p [24] to solve
the resulting first-order system in the unbounded x-direction. The
solutions are computed on the positive quadrant with Neumann
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Fig. 9. Bifurcation diagram for both the ⟨10⟩- and ⟨11⟩-hexagon fronts with Ā = 1, η2
= 0.1.
Fig. 10. Hexagon ⟨10⟩ front isolas with Ā = 1, η2
= 0.04. The labelled solutions are for the solid isola branch. The domain covering hexagon fold occurs at ϵ = −0.092

while the radial spot fold occurs at ϵ = −0.103 and lines up with the folds of the ⟨10⟩ fronts.
boundary conditions. Typical mesh sizes are NTST = 100 on x ∈

[0, 100] and 20 collocation points in the y-direction.
To describe different directions and interfaces on the hexagon

lattice we use the Bravais–Miller index notation; see [18]. On a
hexagonal lattice there are two principal directions ⟨10⟩- and ⟨11⟩-
directions, that are at π/3 radians apart.

Setting Ā = 1, η2
= 0.1, we show the bifurcation diagram

for both the principal ⟨10⟩- and ⟨11⟩-hexagon fronts in Fig. 9.
Here we observe the same type of snaking behaviour seen in the
Swift–Hohenberg equation [18] where the ⟨10⟩-front (label (1) in
Fig. 9) snakes over a larger region of parameter space than the ⟨10⟩-
front (label (2) in Fig. 9). As one proceeds up the snake, entire rows
of hexagon cells are added to both ends of the interface.We also ex-
pect there to be almost hexagon frontswhere single cells are grown
along the edge of the interface; see Lloyd et al. [18, Figure 21].

As we decrease η, we find that the bifurcation diagram is made
upof isolas of hexagon fronts that go beyond the saddle–nodepoint
for the domain covering hexagons; see Fig. 10. These parameter
values are the same as those used by Short et al. [7, Figure 7]. As one
transverses the isolas, we see that the localised hexagon pattern
passes to amulti-pulse state involving the hexagon cells; see panel
(2) Fig. 10. In particular, we see that the left most folds of the ⟨10⟩-
fronts occur at the fold of the radial spot strongly suggesting that
the localised structure is made-up of radial spots. This explains
why the fronts in Fig. 10 can exist beyond the fold of domain
covering hexagons. However, it is clear that near the bottom right
folds, the interior of the front does look like domain covering
hexagons.We also note that decay to the background state changes
from oscillatory to monotonic as one transverses the bifurcation
diagram. This change in the type of decay to the background state is
expected to have a significant effect on the multi-pulses observed
as neither the theory of Knobloch &Wagenknecht [27] or Knobloch
et al. [28], directly applies.

We showonly a single isola for the ⟨11⟩-hexagon front in Fig. 11.
As for the ⟨10⟩-front, we see that the hexagon cells become more
localised and the left-most folds lining up with the fold of the spot.
We also see that a multi-pulse states are created where the centre
cells are missing. At the bottom right fold, the solution appears to
be again made up again of hexagon cells rather than spots similar
to that seen in Fig. 10 for the ⟨10⟩-front. The other ⟨11⟩-front isolas
are more intricate but all the left-most folds line-up with the fold
of the spot and we also see a variety of multi-pulses.

5.3. Hexagon patches

We numerically solve the (1.1) in polar coordinates (r, θ)
and employ finite-differences in the radial direction and Fourier
pseudo-spectral method in the angular direction. Neumann
boundary conditions are applied at r = 0 where the discretised
mesh is chosen to avoid a mesh point at the core. Furthermore,
Neumann boundary conditions are applied in the angular direction
and we compute on θ ∈ [0, πk∗

crit/3] to impose D6-symmetry. We
use the epcont continuation algorithm described in [34].

We show the hexagon patch snaking bifurcation diagram
starting from a radial spot for η2

= 0.1, Ā = 1 in Fig. 12.
There is an initial D6-bifurcation off the radial spot where a branch
develops into a hexagon patch by initially growing six hexagon
cells to form a super-hexagon patch made up of six ⟨10⟩-hexagon
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Fig. 11. Hexagon ⟨11⟩ front isola with Ā = 1, η2
= 0.04. The domain covering hexagon fold occurs at ϵ = −0.092 while the radial spot fold occurs at ϵ = −0.103 and lines

up with the folds of the ⟨11⟩ fronts.
Fig. 12. Hexagon patch snaking bifurcation diagram for η2
= 0.1, Ā = 1. Here we see how a hexagon patch is grown from a D6-bifurcation off the radial spot. Six cells are

initially grown until a super-hexagon patch (made up of ⟨10⟩-interfaces) is completed. Subsequent cells are grown from the centre and along the ⟨10⟩-interfaces.
interfaces. From there the next row of hexagon cells is added by
first growing cells in the middle and along the six ⟨10⟩-interfaces
to complete a new super-hexagon patch. This process is identical
to that observed in the planar Swift–Hohenberg equation; see [18].

In Fig. 13(a), we show the bifurcation diagram starting from a
seven cell hexagon patchwith Ā = 1, η = 0.04.We see that as one
decreases ϵ, the cells become more localised and start to resemble
seven radial spots. As one proceeds around the fold labelled 3,
the middle cell at the core decays to zero to create a ring of cells.
This process is similar to that seen for the ⟨11⟩-front in Fig. 11. In
Fig. 13(b), we compare the maximum height of the A-component
of the system for both the patch and radial spot. Here we find
excellent agreement suggesting the patch is made up of radial
spots. This also explains why the patch exists in a parameter space
that extends beyond the existence of domain covering hexagons.

6. Conclusion

In this paper, we have studied stationary, localised patterns bi-
furcating off the background state in the crime hotspotmodel (1.1)
near the Turing instability and singular limit. The results in this pa-
per show that the PDE system (1.1) possess a far richer set of solu-
tions than just the domain covering periodic patterns analysed by
Short et al. [7] and the spike solutions found in the D ≫ 1 limit
of (1.2) by Kolokolnikov et al. [9]. The main outcome of this pa-
per is that both the singular limit and the Turing instability create
stationary localised states that one can follow between these two
regions in parameter space.

We find in one-dimension, homoclinic snaking for parameter
values near the sub/supercritical Turing instability threshold away
from the singular limit giving rise to infinitelymany localised crime
hotspots. Using numerics, we show that the localised patterns
found in the homoclinic snaking region can pass to the singular
limit η → 0 where it appears that homoclinic snaking ceases and
the localised solutions approach multi-pulse states. The singular
limit analysis carried out in Section 4 shows that we expect to see
homoclinic pulses connecting the spatially homogeneous steady
state.

In two-dimensions, we find that spots bifurcate off the back-
ground state at the Turing instability for a larger range of param-
eter values than the one-dimensional pulses since the condition
in Theorem 1 requires simply that θ ≠ 0 (i.e., up–down sym-
metry is broken at onset) rather than in 1D where we require
that η

√

Ā . 0.157. Away from the singular limit, the homoclinic
snaking of hexagon fronts and patches is remarkably similar to
that seen in the Swift–Hohenberg equation; see [18]. In partic-
ular that the ⟨10⟩-front snakes over a large region of parameter
space than the ⟨11⟩-front and the snaking of D6-hexagon patches
appears to be linked with the snaking of the fronts. This strongly
suggests that there is a more fundamental mechanism relating the
snaking of localised hexagon patterns for general non-variational
systems. While we have not investigated the stability of the lo-
calised hexagon patterns, we anticipate that such solutions can be
stable since the doubly-periodic hexagon patterns are stable in the
same parameter region.

It is clear from the localised hexagon numerics that the singu-
lar limit has a dramatic effect on the homoclinic snaking structure.
As one approaches the singular limit, the localised hexagon struc-
tures begin to act like a collection ofmulti-spots and the bifurcation
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a b

Fig. 13. (a) Hexagon patch bifurcation diagram for Ā = 1, η2
= 0.04, and (b) the maximum value of the radial spot (solid curve) and the patch (dashed curve).
diagram for both planar fronts and patches breaks up into isolas;
see [35,36] for a singular limit analysis of localised hexagon struc-
tures in the Gierer & Meinhardt system. We believe near the sin-
gular limit, the one-dimensional localised patterns observed in the
snaking region also approach a multi-pulse state and homoclinic
snaking ceases. However, due to the difficultly in carrying out the
analysis and numerics near the singular limit, it still may be pos-
sible that homoclinic snaking persists. We note that the singular
limit in one-dimension appears to be geometrically similar to that
in the Gray–Scott model (see [30]) albeit with a large excursion
possible in the slow-manifold and we leave it as an open problem
to rigorously prove the existence of the localised patterns found as
η → 0. It would also be interesting to see if homoclinic snaking is
possible in the Gierer & Meinhardt system away from the singular
limit. We note that similar one-dimensional snaking localised pat-
terns (to those observed in Section 3) have also been observed in a
neural-field model [37] where we believe that there is also a simi-
lar singular limit. Hence, we believe the type of homoclinic snaking
(and geometry of the slow/fast manifolds) observed in Section 3,
occurs in a range of different models beyond the one studied here.

We have left the analysis of the precise transition from
homoclinic snaking to multi-pulse for further investigation. Fur-
thermore, we have not investigated stability of the localised pat-
terns found in this paper. However, we expect that some of these
states studied in this paper are stable and there may be bifur-
cations to other localised states not explored in this paper. In
Kolokolnikov [9], they found that there was Hopf bifurcation of the
hotspots in a small region of parameter space but formost parame-
ter values no Hopf bifurcation occurred. However, it may be possi-
ble that there is a Hopf/travelling wave bifurcation of the localised
states found in this paper giving rise to time-dependent localised
patterns that have not so far been observed in (1.1); such states
have been studied in other reaction–diffusion systems [38–40]. An-
other interesting direction would be to explore travelling localised
hotspots (see for example [30]) and the derivation of multi-pulse
interaction equations (see for example [41]). It is expected that
other models of urban crime (such as [5,6]) also possess localised
states and it would be interesting to see if the localised patterns in
the models have the similar behaviour.

Looking at the urban crime context of themodel, η corresponds
to the neighbourhood effects and the rate of diffusion of the
attractiveness field. Short et al. [4] investigated the case when
η is small (i.e., near the singular limit studied in this paper) for
both an agent-based model and the PDE model (1.1) and found
many solutions consisting of multiple hotspots. These interacting
spots have more freedom and may more closely match crime
data that is not spatially doubly periodic. The one-dimensional
multi-pulses away from the singular limit in the snaking region
will likely lie on isolas overlaying the snaking branches; see [28].
Close to the singular limit, the multi-pulses will exist for the
parameter region where a single spike exists and hence explain
the existence of large highly localised crime spikes surrounded
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Fig. 14. Effect of increasing the 1D lattice distance on the localised patterns for
Ā = 1. Solid line η2

= 0.01 and dashed line η2
= 0.015.

by relative criminal quiescence. It would be desirable to derive a
reduced set of equations for the interaction of pulses in the η → 0
limit and we leave this as an open problem; see Sun et al. [42] and
Doelman et al. [43] for a similar reduction for in the Gray–Scott and
Gierer–Meinhardt models.

In this paper, we have concentrated on hotspots on the infinite-
domain but the existence of hotspots on a finite domain is an
interesting problem and important for understanding urban crime.
On large finite-domains, the results in this paper are expected
to persist (in particular, the numerical results in this paper are
all computed on finite-domains). The effect of finite-domains on
the homoclinic snaking scenario has been studied in a range of
different models (see for instance [21,22]) where one initially
observes homoclinic snaking before the branch connects to near
the fold of the domain covering spatially periodic orbits. Near
the singular limit on smaller finite-domains, one can construct
periodic spikes using the samemethods described in Section 4 (see
for instance [44]) and new phenomena like peak insertion may
appear [9].

We now discuss what might happen to these localised patterns
in the agent-based model that the PDE system (1.1) was originally
derived from. As the continuum limit is taken after averaging the
stochastic basedmodel, a first step towards understanding how the
PDE solutions relate to the agent-based model is by simply apply-
ing second-order finite-difference scheme to the PDEs to investi-
gate the effect of the lattice on the localised patterns. In Fig. 14,
we show the effect of changing the lattice distance ∆x on the one-
dimensional localised states. We see that as ∆x is increased, the
localised patterns undergo homoclinic snaking similar to that seen
by Yulin & Champneys [45] and Taylor & Dawes [46]. We also see
that as η is increased the localised patterns exist for a larger lat-
tice distance but that there is a maximum lattice distance the lo-
calised states can exist for and that the width of the snaking region
decreases. In the presence of noise, we expect these stationary lo-
calised patterns to become unstable (though they may be meta-
stable for short time scales) andmay either collapse, fill the domain
with periodic pattern or begin travelling. We note that we have
been unable to find (on time average) stationary localised struc-
tures in the same parameter region in the full stochastic agent-
based model.
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Appendix. Radial normal form analysis

In this appendix we describe the modifications to the proof of
the existence of Spot A in [19] required to prove Theorem 1.

We first re-write the time-independent radial PDE system (1.1)
as a first-order ODE system to yield

Ar = B, (A.1a)

Br = −
1
r
B +

A
η2

−
A0

η2
−

ρA
η2

, (A.1b)

ρr = σ , (A.1c)

σr = −
1
r
σ + 2

ρ

η2A
(A − A0

− ρA)

+
2
A2

(ABσ − ρB2) + ρA + A0
− Ā. (A.1d)

We now proceed to re-write this system as a Swift–Hohenberg
equation. We solve the first two equations in (A.1) for ρ and
substitute these into the last two equations, setting A = Ā + B(r)
and carrying out a Taylor series expansion about B = 0 we find

η2

Brrrr +

Br

r3
−

Brr

r2
+ 2

Brrr

r


+


2 − η2Ā − 3

A0

Ā


Brr +

Br

r


+ ĀB + B2

− η2 BrB
r

− 4
η2BrBrrr

Ā
+

η2

Ā
B2
r

r2
− η2BBrr

−
10η2

Ā
BrBrr

r
−

2
Ā
B2
r + 6

A0

Ā2
B2
r −

3η2

Ā
B2
rr +

6A0

Ā2
B2
r

−
3η2

Ā
B2
rr +

3A0

Ā2

BBr

r
+

3A0

Ā
BrBrr + O(B3) = 0.

If we now employ the rescaling

B →
u
η2

, r → rη


2Ā

2Ā − η2Ā2 − 3A0
,

we can re-write the equation as

(1 + ∆r)
2u +


2η2Ā3

2 − η2Ā − 3A0
2 − 1


u

+ f (u, ur , urr , urrr) + O(u3) = 0, (A.2)

where f is a quadratic function given by

f (u, ur , urr , urrr) =
α4

η2
u2

+
α2

η2


3A0

Ā2
− η


uur −

8
Āη

ururrr

+
1
Āη

u2
r

r2
+ 2

α2

η2Ā


6A0

Ā
− 1


u2
r

+
α

η2Ā
(3A0

− 10η)ururr −
6
ηĀ

u2
rr −

α2

η
uurr ,

where α = η


2Ā

2Ā−η2Ā2−3A0
.

Setting

µ :=


4η2Ā3

2 − η2Ā − 3A0
2 − 1


,
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to be the bifurcation parameter, where a Turing instability occurs
when µ = 0 i.e., A0

= A0
∗
. We note that setting A0

= A0
∗

+ ϵ,
|ϵ| ≪ 1, we find that µ = 3ϵ/ηĀ3/2

+ O(ϵ2).
Expressing Eq. (A.2) as follows

∂2
r +

1
r
∂r + 1


u1 = u2,

∂2
r +

1
r
∂r + 1


u2

= −µu1 − f (u1, (u1)r , (u1)rr , (u1)rrr) + O(u3
1),

we may re-write Eq. (A.2) as a four dimensional system of non-
autonomous differential equations (see [19])

Ur = AU + F (U, µ), A =


0 0 1 0
0 0 0 1

−1 1 −
1
r

0

0 −1 0 −
1
r

 ,

F =

 0
0
0

F4(u1, u2, u3, u4, µ)

 ,

(A.3)

where U = (u1, u2, u3, u4)
T and

F4(u1, u2, u3, u4, µ) = −µu1 − f

u1, u3, −u1 + u2

−
1
r
u3,

1
r
u1 −

1
r
u2 +


2
r3

− 1

u3 + u4


+ O(u3

1).

We note that the linear system Ur = A(r)U has four linearly
independent solutions

V1(r) =
√
2π(J0(r), 0, −J1(r), 0)T ,

V2(r) =
√
2π(rJ1(r), 2J0(r), rJ0(r), −2J1(r))T ,

V3(r) =
√
2π(Y0(r), 0, −Y1(r), 0)T ,

V4(r) =
√
2π(rY1(r), 2Y0(r), rY0(r), −2Y1(r))T .

Following Lloyd& Sandstede [19], in order to construct localised
spots, one needs to show that there is a non-degenerate quadratic
tangency of the centre unstable manifold from the core at µ = 0.
In particular, we need the following Lemma that is a slight
modification of Lemma 1 in [19].

Lemma 1. Fix r0 > 0, then there are constants δ0, δ1 > 0 so that the
set W cu

−
(µ) of solutions U(r) of (A.3) for which sup0≤r≤r0 |U(r)| <

δ0 is, for |µ| < δ0, a smooth two-dimensional manifold. Furthermore,
U ∈ W cu

−
(µ) with |Pcu

−
(r0)U(r0)| < δ1 if and only if

U(r0) = d1V1(r0) + d2V2(r0) + V3(r0)Or0(|µ||d| + |d|2)

+ V4(r0)

[θ1 + o(1)]d21 + [θ2 + o(1)]d1d2

+ [θ3 + o(1)]d22 + Or0(|µ||d| + |d|3)

, (A.4)

for some d = (d1, d2) ∈ R2 with |d| < δ1, where the right-hand side
in (A.4) depends smoothly on (d, µ), o(1) is the Landau symbol in r0
as r0 → ∞ and θ1, θ2, θ3 are constants depending on Ā, A0

∗
and η. In

particular,

8θ1
√
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4
√
3

+
α2

η4


3A0

∗

Ā2
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Āη2


8π
3

+
√
3


+ 2
α2
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Ā
− 1


2

√
3

+
α

η4Ā
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−

6
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√
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4π
3
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√
3
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2π
3
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4

√
3


,

where we evaluate θ1 at µ = 0 (i.e. A0
= A0

∗
) and

I1 =


∞

0
J0(r)J1(r)2dr ∼ 0.186.

The proof of Lemma 1 is the same as that in [19] except for
the calculation of the quadratic coefficients θ1, θ2, θ3. For the exist
of Spot A, we only need to calculate θ1 and find when it is non-
zero. The θ1 coefficient is found by calculating the integral (the last
integral in [19, Eq. 2.7])

θ1 =

√
2π
8


∞

0
rJ0(r)f

√
2π J0(r), −

√
2π J1(r),

−
√
2π(J0(r) −

1
r
J1(r)),

√
2π(J1(r) +

1
r
J0(r) −

2
r2

J1(r))

dr.

To calculate the Bessel integrals, we use the following relations
fromWatson [47]

∞

0
Jν(ar)Jν(br)Jν(cr)r1−νdr =

2ν−1∆2ν−1

(abc)νΓ (ν +
1
2 )Γ ( 1

2 )
,

∞

0
Jµ(ar)Jν(br)Jν(cr)r1−µdr

=
(bc)µ−1 sin(A)µ−

1
2

√
2πaµ

P
1
2 −µ

ν−
1
2

(cos(A)),

where ∆ is the area of the triangle of sides a, b, c and A =

arccos


b2+c2−a2
2bc


and P is the associated Legendre function. Al-

most all the Bessel integrals have explicit solutions except the in-
tegral I1 whichwe have been unable to find an explicit solution for.

The matching of the core manifold

W cu
−

(µ)|r=r0 :


A
B


= ei[−π/4+O(1/r20 )+Or0 (|µ|+|d|2)]

×


d1[1 + O(r−1

0 )] − d2[i + O(r−1
0 )] + Or0(|µ||d| + |d|2)

− d2r−1
0 [i + O(r−1

0 )] − [θ1 + o(1)]
√
r0d21 − [θ2 + o(1)]

×
1

√
r0

d1d2 − [θ3 + o(1)]
1

r3/20

d22

+Or0(|µ||d| + |d2|2 + |d1|3)


,

where A, B are the normal form coordinates in [19, Lemma 2]
and (d1, d2) = (d̃1/

√
r0,

√
r0d̃2) with the far-field manifold [19,

Eq. (5.10)]

W s
+
(µ) :


A
B


=

√
µβ


1
0


+ µβ


−

1
2

+ O(s1) + Os1(µ +
√

µ|η|
2)


r0
1


(A.5)

now proceeds in exactly the same fashion as in [19, Section 5].
Re-defining β to remove the phase in W cu

−
(µ)|r=r0 and setting
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dj =
√

µd̂j andwriting β = β1+ iβ2 one has to solve thematching
equations

d̂1 − id̂2 − iβ2 + O(r−1
0 )d̂ + Or0(µ|d̂| +

√
µ|d̂|2)

= β1 +
√

µr0O(β), (A.6a)

−id̂2 + O(r−1
0 )d̂2 − (θ1 + o(1))r3/20

√
µd̂21

− (θ2 + o(1))
√
r0

√
µd̂1d2 − (θ3 + o(1))

1
√
r0

√
µd̂22

+Or0(µ|d̂| + µ|d̂|3)

=
√

µr0β

−

1
2

+ O(s1 + r−2
0 ) + Os1(

√
µ)


. (A.6b)

For r0 ≫ 1 sufficiently large but fixed, we can solve the
(ℜA, ℑA, ℑB)-components of this equation for (d̃1, d̃2, β2) as a
function of (β1, µ), and we have the expansion

d̃1 = β1 + O(
√

µβ1), d̃2 = O(
√

µβ1),

β2 = O(1/r0)β1 + O(
√

µβ1).

Substituting this solution into (A.6) and projecting it onto the
remaining (ℜB)-component along the range of the linear map
d̃2 → (−i + O(1/r0))d̃2, we arrive at the equation

− [θ1 + o(1)] r
3
2
0 β2

1 + Or0(µβ1)

= r0β1


−

1
2

+ O(1/r0) + O(s1) + Os1(
√

µ)


.

Factoring out the trivial solution β1 = 0, which corresponds to
u = 0, we solve the equation

− [θ1 + o(1)]
√
r0νβ1 + Or0(µ)

= −
1
2

+ O(1/r0) + O(s1) + Os1(
√

µ),

which has the unique small solution

β1 =
1 + O(1/r0) + O(s1) + Os1(

√
µ)

2
√
r0θ1

≠ 0.

In particular, transforming back to the original amplitudes d1 and
d2, and reversing (d1, d2) = (d̃1/

√
r0,

√
r0d̃2), we see that

d1 =

√
µ

2θ1
≠ 0, d2 = O(µ)

as claimed.
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